MadGraph 5: Advanced Topics

Olivier Mattelaer
 University of Illinois at Urbana Champaign

Thanks to Celine Degrande to allow me to present part of her work

Plan of the lectures

- Motivation For Dimension 6 Operators
- Example: forward-backward Asymmetry
- MG5 Generation

What can we expect from the LHC?

What can we expect from the LHC?

What can we expect from the LHC?

A new peak

What can we expect from the LHC?

Model Independent Search

- New Physics at (too?) High Energy

Model Independent Search

- New Physics at (too?) High Energy

Model Independent Search

- New Physics at (too?) High Energy

Effective Vertex

Model Independent Search

- New Physics at (too?) High Energy

Effective Vertex

Additional terms in the Lagrangian

$$
\mathcal{L}=\mathcal{L}_{S M}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{\Lambda^{4}} \mathcal{L}_{8}+\ldots
$$

Model Independent Search

- New Physics at (too?) High Energy

Effective Vertex

Additional terms in the Lagrangian

$$
\mathcal{L}=\mathcal{L}_{S M}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\frac{1}{L^{4} \mathcal{L}_{8}}+\ldots
$$

A Famous Example: Fermi Theory

- The muon decay can (and was) be described by a Dimension 6 operator

A Famous Example: Fermi Theory

- The muon decay can (and was) be described by a Dimension 6 operator

A Famous Example: Fermi Theory

- The muon decay can (and was) be described by a Dimension 6 operator

- This corresponds to the first term of the propagator Taylor expansion

A Famous Example: Fermi Theory

- The muon decay can (and was) be described by a Dimension 6 operator

$$
\begin{aligned}
& \frac{G_{F}}{\sqrt{2}}\left(\bar{\nu}_{l} \gamma_{\mu}\left(1-\gamma_{5}\right) l\right)\left(\bar{l} \gamma^{\mu}\left(1-\gamma_{5}\right) \nu_{l}\right) \\
& \text { Dimension 6: } \quad \frac{G_{F}}{\sqrt{2}}=\frac{c_{F}}{\Lambda_{F}^{2}}
\end{aligned}
$$

- This corresponds to the first term of the propagator Taylor expansion

$$
\frac{1}{p^{2}-M_{W}^{2}}=-\frac{1}{M_{W}^{2}}-\frac{p^{2}}{M_{W}^{4}}+\cdots
$$

Effective Field Theory

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

Effective Field Theory

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

Type Name Dimension

Bosons	H, G, W, B	I
Fermion	$L, Q, l_{R}, u_{R}, d_{R}$	$3 / 2$
Covariant derivative	D^{μ}	1
Strength tensor	$F^{\mu \nu}$	2

Effective Field Theory

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

The number of possible Operators are huge

- 59 Dimension 6 Operators If Preserve the SM gauge symmetries Preserve B-L accidental symmetries
We consider only one flavor

Effective Field Theory

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

The number of possible Operators are huge

- 59 Dimension 6 Operators If

Preserve the SM gauge symmetries
Preserve B-L accidental symmetries
We consider only one flavor

- Only One Dimension 5 Operator:

$$
\mathcal{O}=L H L H
$$

Give a mass to the neutrino

Effective Field Theory

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

Effective Field Theory

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

- Only few Operators for one process and different effects

Effective Field Theory

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

- Only few Operators for one process and different effects
- Unitary Satisfied at low Energy

Effective Field Theory

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

- Only few Operators for one process and different effects
- Unitary Satisfied at low Energy
- More than one vertex in an operator

Effective Field Theory

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

No Additional couplings

Effective Field Theory

$$
\mathcal{L}=\mathcal{L}_{S M}+\sum \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}
$$

- Only few Operators for one process and different effects
- Unitary Satisfied at low Energy
- More than one vertex in an operator
- Description valid at NLO (Loop and radiation)

Forward-Backward Asymmetry

Forward-Backward Asymmetry

Forward-Backward Asymmetry

$$
A_{F B}^{S M}=0.066 \pm 0.007
$$

Forward-Backward Asymmetry

$$
A_{F B}^{S M}=0.066 \pm 0.007
$$

Forward-Backward Asymmetry

$$
\begin{aligned}
& A_{F B}^{o b s}=0.162 \pm 0.047 \\
& A_{F B}^{S M}=0.066 \pm 0.007
\end{aligned}
$$

2 Sigma

Dimension 6 operators

$$
\left.\begin{array}{rl}
\mathcal{O}_{h g} & =\left[\left(H \bar{Q}_{L}\right) \sigma^{\mu \nu} T^{A} t_{R}\right] G_{\mu \nu}^{A} \\
\mathcal{O}_{R v} & =\left[\bar{t}_{R} \gamma^{\mu} T^{A} t_{R}\right] \sum_{q}\left[\bar{q} \gamma_{\mu} T^{A} q\right] \\
\mathcal{O}_{R a} & =\left[\bar{t}_{R} \gamma^{\mu} T^{A} t_{R}\right] \sum_{q}\left[\bar{q} \gamma_{\mu} \gamma_{5} T^{A} q\right]
\end{array}\right\} t_{R} \rightarrow Q_{L}
$$

Dimension 6 operators

Dimension 6 operators

$$
\begin{aligned}
& \mathcal{O}_{R v} \quad\left[t_{R} \gamma^{\mu} T^{A} t_{R}\right] \sum_{q}\left[q \gamma_{\mu} T^{A} G_{a}\right] \\
& \left.\mathcal{O}_{R a}=\left[\bar{t}_{R} \gamma^{\mu} T^{A} t_{R}\right] \sum_{q}\left[\bar{q} \gamma_{\mu} \gamma_{5} T^{A} q\right]\right\} t_{R} \rightarrow Q_{L} \\
& \delta A_{F B}=0.047(\underbrace{c_{R a}-c_{L a}}_{c_{A a}})\left(\frac{1 T e V}{\Lambda}\right)^{2}
\end{aligned}
$$

Dimension 6 operators

$$
\begin{aligned}
& \mathcal{O}_{R v} \quad\left[t_{R} \gamma^{\mu} T^{A} t_{R}\right] \sum_{q}\left[q T_{\mu} \tau^{A} q\right] \\
& \left.\mathcal{O}_{R a}=\left[\bar{t}_{R} \gamma^{\mu} T^{A} t_{R}\right] \sum_{q}\left[\bar{q} \gamma_{\mu} \gamma_{5} T^{A} q\right]\right\} t_{R} \rightarrow Q_{L} \\
& \delta A_{F B}=0.047(\underbrace{c_{R a}-c_{L a}}_{c_{A a}})\left(\frac{1 T e V}{\Lambda}\right)^{2} \\
& \text { Best Fit: } \\
& \frac{c_{A a}}{\Lambda^{2}}=2.04 T e V^{-2}
\end{aligned}
$$

Forward-Backward Asymmetry

Does it fit the distributions?

Provides a correct description

I UlUC

Generation

FR Implementation

$$
\mathcal{O}_{W W W}=\operatorname{Tr}\left[W_{\mu \nu} W^{\nu \rho} W_{\rho}^{\mu}\right]
$$

```
M$InteractionOrderHierarchy = {
{NP,1}
}
M$InteractionOrderLimit = {
{NP,2}
}
CWWWL2== {
    ParameterType -> External,
    ParameterName -> CWWWL2,
    BlockName -> DIM6,
        InteractionOrder -> {{QED,-3},{ NP, 2}},
    Value -> 1,
        TeX -> Subscript[C,WWW]/\[CapitalLambda]^2,
    Description -> "coefficient of OWWW in TeV-2"},
    LWWW := ExpandIndices[CWWWL2*10^(-6) gw^3/4 Module[{mu, nu, rho, L, J, K},
    Eps[L, J, K] FS[Wi, mu, nu, L] FS[Wi, nu, rho, J] FS[Wi, rho,
    mu,K]],FlavorExpand->SU2W] ;
```


Make an efficient generation

- When studying Operators, we want to study those one (or two) at the time.
- Theoretician wants to provide a single model
\longrightarrow How to have an efficient generation?

Model too generic

Solution I:

- Assign a specific order to each operator generate p p $>\mathrm{w}+\mathrm{w}-\mathrm{NP} 2=0$ NP3 $=0$ NP4 $=0$ NP5 $=0$ NP6 $=0$

Not beautiful

Model too generic

Solution I:

- Assign a specific order to each operator generate p p $>\mathrm{w}+\mathrm{w}-\mathrm{NP} 2=0$ NP3 $=0$ NP4=0 NP5 $=0$ NP6=0

Not beautiful

Solution II:

- Set the associated coupling value to zero and keep the diagram
generate P p > w+ w-

Not efficient and not I00\% safe

Model too generic

Solution III:

- Restrict the model to what you need!

I Uluc

Model too generic

Solution III:

- Restrict the model to what you need!
- Put your param_card in the model directory with name "restrict_NAME"
- import your model as "MODEL-NAME"

Model too generic

Solution III:

- Restrict the model to what you need!
- Put your param_card in the model directory with name "restrict_NAME"
- import your model as "MODEL-NAME"

What is this doing ?

- Remove all interaction with zero coupling
- Optimize Model
- Simplify Param_card

Model too generic

Solution III:

Examples: sm-ckm sm-lepton_masses sm-no_b_mass sm-no_masses sm-no_tau_mass sm-zeromass_ckm

Example
 b b~ > t t~ QCD=0

SM

Example b b~ > t t~ QCD=0

SM-no_b_mass

SM

Example b b~ > t t~ QCD=0

SM-no_b_mass

SM

restriction card:
\# \#\# INFORMATION FOR MASS \# Block MASS
$40.000000 \mathrm{e}+00$ \# MC
$50.000000 \mathrm{e}+00$ \# MB
6 1.730000e+02 \# MT
$110.000000 \mathrm{e}+00$ \# Me
$130.000000 \mathrm{e}+00$ \# MM
15 1.777000e+00 \# MTA
23 9.118800e+01 \# MZ
$251.200000 \mathrm{e}+02$ \# MH

Example b b~ > t t~ QCD=0

SM-no_b_mass

SM

Example b b~ > t t~ QCD=0

SM-no_b_mass

restriction card:

\# \#\# INFORMATION FOR MASS
\# Block MASS
\# \#\# INFORMATION FOR YUKAWA \# Block YUKAWA
$40.000000 \mathrm{e}+00$ \# ymc
$50.000000 \mathrm{e}+00$ \# ymb
$61.645000 \mathrm{e}+02$ \# ymt
$110.000000 \mathrm{e}+00$ \# yme
$130.000000 \mathrm{e}+00$ \# ymm
$151.777000 \mathrm{e}+00$ \# ymtau

diagram $2 \quad Q C D=0, Q E D=2$

Example b b~ > t t~ QCD=0

SM-no_b_mass

SM

restriction card:

\# \#\# INFORMATION FOR MASS
\# Block MASS
\# \#\# INFORMATION FOR YUKAWA \# Block YUKAWA
$40.000000 \mathrm{e}+00$ \# ymc $50.000000 \mathrm{e}+00$ \# ymb
6 1.645000e+0L \# ymt
$110.000000 \mathrm{e}+00$ \# yme
$130.000000 \mathrm{e}+00$ \# ymm
$151.777000 \mathrm{e}+00$ \# ymtau

diagram $2 \quad$ QCD=0, QED=2

Example

b b~ > t t~ QCD=0

SM-no_b_mass

Param card:

-\#
\#\# INFORMATION FOR MASS
\#
Block mass
6 1.730000e+02 \# MT
$151.777000 \mathrm{e}+00$ \# MTA
$239.118800 \mathrm{e}+01$ \# MZ
$251.200000 \mathrm{e}+02$ \# MH
\#\# Not dependent paramater.
\#\# Those values should be edited fo
\#\# analytical expression. MG5 ignori
\#\# but they are important for inter
\#\# to external program such as Pyth
120.000000 \# ve : 0.0
140.000000 \# vm : 0.0
160.000000 \# vt : 0.0
20.000000 \# u : 0.0
40.000000 \# c : 0.0
10.000000 \# d : 0.0
30.000000 \# s : 0.0
50.000000 \# b : 0.0

Param card:

\# \#\# INFORMATION FOR MASS
\# Block mass
$54.700000 \mathrm{e}+00$ \# MB
6 1.730000e+02 \# MT
15 1.777000e+00 \# MTA
23 9.118800e+01 \# MZ
$251.200000 \mathrm{e}+02$ \# MH
\#\# Not dependent paramater.
\#\# Those values should be edited fo
\#\# analytical expression. MG5 ignor
\#\# but they are important for inter
\#\# to external program such as Pyth:
120.000000 \# ve : 0.0
140.000000 \# vm : 0.0
160.000000 \# vt : 0.0
20.000000 \# u : 0.0
40.000000 \# c : 0.0
10.000000 \# d : 0.0
30.000000 \# s : 0.0

Example

b b~ > t t~ QCD=0

SM-no_b_mass

Param card:

Param card:

\# \#\# INFORMATION FOR MASS
\#
Block mace
SM

FR/MG School on LHC Phenomenology, Sept 30-Oct 052012

Model too generic

Solution III:

Examples: sm-ckm sm-lepton_masses sm-no_b_mass sm-no_masses sm-no_tau_mass sm-zeromass_ckm

- Advantages

Easy to implement for the final user
Quite optimal

Model too generic

Solution III:

Examples: sm-ckm sm-lepton_masses sm-no_b_mass sm-no_masses sm-no_tau_mass sm-zeromass_ckm

- Advantages

Easy to implement for the final user
Quite optimal

- Drawbacks
(Potential accidental removal
The number of restriction card to cover all cases

Model Too Generic

Solution IV:

- Create your restriction card on the flight:

Model Too Generic

Solution IV:

- Create your restriction card on the flight:

```
m, }5>\mathrm{ customize_model
INFO: cuan purcictes
INFO: load vertices
sm customization:
    1: diagonal ckm [True]
    2: c mass = 0 [True]
    3: b mass = 0 [False]
    4: tau mass = 0 [False]
    5: muon mass = 0 [True]
    6: electron mass = 0 [True]
    A//2B/O/NOM
Adding Dim6 Operator:
    7: CWWW [True]
    8: CW [True]
    9: CB [True]
    10: CWWW CP violating [False]
    11: CW CP violating [False]
Enter a number to change it's status or press enter to validate [0, 1, 2, 3, 4, 5, 6, 7, 8, ... ][60s to answer]
```


This require some work of the model builder

- Require an additional file in UFO: build_restrict.py

```
import models.build_restriction_lib as build_restrict_lib
all_categories = []
first_category = build_restrict_lib.Category('sm customization')
all_categories.append(first_category)
create category
first_category.add_options(name='diagonal ckm', # name
    default=True, # default Options and insert
    default=True, # default options and insert
    rules=[('CKMBLOCK',[1], 0.0)], value in the card
    initialisation
```

\longrightarrow Not automatic! But easy to write! \longrightarrow Allow a lot of freedom

MadGraph is here to help you!

Conclusion

- We have the tools to make analysis Effective Lagrangians available (FR/MG)
- Dimension 6 operators are simple and powerful automatic gauge invariance
unitarity
guidance for experimentalist
- Dimension 6 operators can explain the data

Order Restriction

- You can have up to ONE dimension six operator by diagram

$$
\mathcal{M}=\mathcal{M}_{\text {SM }}+\frac{1}{\Lambda^{2}} \mathcal{M}_{\text {one }}+\frac{1}{\Lambda^{4}} \mathcal{M}_{\text {two }} \text { Equivalent to dimension } 8 \text { operator }
$$

Order Restriction

- You can have up to ONE dimension six operator by diagram

```
NP = CouplingOrder(name = 'NP',
    expansion_order = 2,
    hierarchy = 1)
QCD = CouplingOrder(name = 'QCD',
    expansion_order = 99,
    hierarchy = 1)
QED = CouplingOrder(name = 'QED',
    expansion_order = 99,
    hierarchy = 2)
```


Order Restriction

- You can have up to ONE dimension six operator by diagram
UFO File: coupling_order
$N P=$ CouplingOrder(name $=1 N P^{\prime}$. expansion_order $=2$ hierarchy = 1)

Maximal order allowed
$Q C D=$ CouplingOrder(name $={ }^{\prime} Q C D{ }^{\prime}$, expansion_order = 99, hierarchy = 1)
$Q E D=$ CouplingOrder(name $={ }^{\prime} Q E D{ }^{\prime}$,
expansion_order = 99,

$$
\text { hierarchy }^{-}=2 \text {) }
$$

Three Gauge Couplings Comparison with Anomalous Coupling

SM Processes

Operator Affecting those processes

- We don't consider Operator with quark Not the best processes to study those

Conserving CP

$\mathcal{O}_{W W W}=\operatorname{Tr}\left[W_{\mu \nu} W^{\nu \rho} W_{\rho}^{\mu}\right]$
$\mathcal{O}_{W}=\left(D_{\mu} \Phi\right)^{\dagger} W^{\mu \nu}\left(D_{\nu} \Phi\right)$
$\mathcal{O}_{B}=\left(D_{\mu} \Phi\right)^{\dagger} B^{\mu \nu}\left(D_{\nu} \Phi\right)$
Not Conserving CP

$$
\begin{aligned}
\mathcal{O}_{\tilde{W} W W} & =\operatorname{Tr}\left[\tilde{W}_{\mu \nu} W^{\nu \rho} W_{\rho}^{\mu}\right] \\
\mathcal{O}_{\tilde{W}} & =\left(D_{\mu} \Phi\right)^{\dagger} \tilde{W}^{\mu \nu}\left(D_{\nu} \Phi\right)
\end{aligned}
$$

Unitarity

Comparison with Anomalous Coupling

$$
\begin{aligned}
\mathcal{L}= & i g_{W W V}\left(g_{1}^{V} W_{\mu \nu}^{+} W^{-\mu}-W^{+\mu} W_{\mu \nu}^{-}\right) V^{\nu}+\kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu \nu}+\frac{\lambda_{V}}{M_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^{\mu} \\
& +\dot{\left.g_{4}^{V} V_{\mu}^{+} W_{\nu}^{-}\left(\partial^{\mu} V^{\nu}+\partial^{\nu} V^{\mu}\right)-i g_{5}^{V}\right)^{\mu \nu \rho \sigma}\left(W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-}-\partial_{\rho} W_{\mu}^{+} W_{\nu}^{-}\right) V_{\sigma}} \\
& \left.+\tilde{\kappa}_{V} W_{\mu}^{+} W_{\nu}^{-} \tilde{V}^{\mu \nu}+\frac{\tilde{\lambda}_{V}}{m_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} \tilde{V}_{\rho}^{\mu}\right)
\end{aligned}
$$

- This is not Gauge Invariant
- No New Physics scale
- No Suppression : Dimension 4 and 6 but also 8 or more if extra derivatives are added
- Breaking unitarity
- Not valid loop description

Link between the two

$$
\begin{aligned}
g_{1}^{Z} & =1+c_{W} \frac{m_{Z}^{2}}{2 \Lambda^{2}} \\
\kappa_{\gamma} & =1+\left(c_{W}+c_{B}\right) \frac{m_{W}^{2}}{2 \Lambda^{2}} \\
\kappa_{Z} & =1+\left(c_{W}-c_{B} \tan ^{2} \theta_{W}\right) \frac{m_{W}^{2}}{2 \Lambda^{2}} \\
\alpha_{\gamma} & =\lambda_{Z}=c_{W W W} \frac{3 g^{2} m_{W}^{2}}{2 \Lambda^{2}} \\
g_{4} & =g_{5}^{V}=0 \\
\tilde{\kappa}_{\gamma} & =c_{\tilde{W}} \frac{m_{W}^{2}}{2 \Lambda^{2}} \\
\tilde{\kappa}_{Z} & =-c_{\tilde{W}} \tan ^{2} \theta_{W} \frac{m_{W}^{2}}{2 \Lambda^{2}} \\
\tilde{\lambda}_{\gamma} & =\tilde{\lambda}_{Z}=c_{\tilde{W} W W} \frac{3 g^{2} m_{W}^{2}}{2 \Lambda^{2}}
\end{aligned}
$$

- Gauge Invariance
- New Scale Suppression

$$
\begin{aligned}
\Delta g_{1}^{Z} & =\Delta \kappa_{Z}+\tan ^{2} \theta_{W} \Delta \kappa_{\gamma} \\
0 & =\tilde{\kappa}_{Z}+\tan ^{2} \theta_{W} \tilde{\kappa}_{\gamma}
\end{aligned}
$$

Provide Guidance

High multiplicity

- Automatic gauge invariance.

