

MadGraph 5: Advanced Topics

Olivier Mattelaer University of Illinois at Urbana Champaign

Thanks to Celine Degrande to allow me to present part of her work

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer

Plan of the lectures

- Motivation For Dimension 6 Operators
- Example: forward-backward Asymmetry
- MG5 Generation

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

Friday, October 5, 12

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

Friday, October 5, 12

• New Physics at (too?) High Energy

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

• New Physics at (too?) High Energy

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

• New Physics at (too?) High Energy

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

• New Physics at (too?) High Energy

• New Physics at (too?) High Energy

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

Friday, October 5, 12

A Famous Example: Fermi Theory

• The muon decay can (and was) be described by a Dimension 6 operator

A Famous Example: Fermi Theory

• The muon decay can (and was) be described by a Dimension 6 operator

$$\frac{G_F}{\sqrt{2}} (\bar{\nu}_l \gamma_\mu (1 - \gamma_5) l) (\bar{l} \gamma^\mu (1 - \gamma_5) \nu_l)$$

Dimension 6:
$$\frac{G_F}{\sqrt{2}} = \frac{c_F}{\Lambda_F^2}$$

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

A Famous Example: Fermi Theory

• The muon decay can (and was) be described by a Dimension 6 operator

$$\frac{G_F}{\sqrt{2}} \left(\bar{\nu}_l \gamma_\mu (1 - \gamma_5) l \right) \left(\bar{l} \gamma^\mu (1 - \gamma_5) \nu_l \right)$$

Dimension 6:
$$\frac{G_F}{\sqrt{2}} = \frac{c_F}{\Lambda_F^2}$$

• This corresponds to the first term of the propagator Taylor expansion

Friday, October 5, 12

A Famous Example: Fermi Theory

• The muon decay can (and was) be described by a Dimension 6 operator

$$\frac{G_F}{\sqrt{2}} \left(\bar{\nu}_l \gamma_\mu (1 - \gamma_5) l \right) \left(\bar{l} \gamma^\mu (1 - \gamma_5) \nu_l \right)$$

Dimension 6:
$$\frac{G_F}{\sqrt{2}} = \frac{c_F}{\Lambda_F^2}$$

• This corresponds to the first term of the propagator Taylor expansion

$$\frac{1}{p^2 - M_W^2} = -\frac{1}{M_W^2} - \frac{p^2}{M_W^4} - \dots$$

Effective Field Theory

 $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i$

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph <u>5 Olivier Mattelaer</u>

Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i$$

Туре	Name	Dimension
Bosons	H,G,W,B	
Fermion	L, Q, l_R, u_R, d_R	3/2
Covariant derivative	D^{μ}	
Strength tensor	$F^{\mu u}$	2

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

Friday, October 5, 12

Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{SM} + \sum rac{c_i}{\Lambda^2} \mathcal{O}_i$$

The number of possible Operators are huge

59 Dimension 6 Operators If
 Preserve the SM gauge symmetries
 Preserve B-L accidental symmetries
 We consider only one flavor

Friday, October 5, 12

Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{SM} + \sum rac{c_i}{\Lambda^2} \mathcal{O}_i$$

The number of possible Operators are huge

- 59 Dimension 6 Operators If
 Preserve the SM gauge symmetries
 Preserve B-L accidental symmetries
 We consider only one flavor
- Only One Dimension 5 Operator: $\mathcal{O} = LHLH$

Give a mass to the neutrino

Effective Field Theory

 $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i$

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph <u>5 Olivier Mattelaer</u>

Effective Field Theory $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i$

Only few Operators for one process and different effects

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Effective Field Theory $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i$

- Only few Operators for one process and different effects
- Unitary Satisfied at low Energy

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

Effective Field Theory $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i$

- Only few Operators for one process and different effects
- Unitary Satisfied at low Energy
- More than one vertex in an operator

Effective Field Theory

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer

Friday, October 5, 12

Effective Field Theory $\mathcal{L} = \mathcal{L}_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i$

- Only few Operators for one process and different effects
- Unitary Satisfied at low Energy
- More than one vertex in an operator
- Description valid at NLO (Loop and radiation)

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer

$A_{FB}^{SM} = 0.066 \pm 0.007$

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

 $A_{FB}^{SM} = 0.066 \pm 0.007$

 $A_{FB}^{obs} = 0.162 \pm 0.047$ $A_{FB}^{SM} = 0.066 \pm 0.007$

2 Sigma

$$\mathcal{O}_{hg} = \left[\left(H \bar{Q}_L \right) \sigma^{\mu\nu} T^A t_R \right] G^A_{\mu\nu}$$

$$\mathcal{O}_{R\nu} = \left[\bar{t}_R \gamma^\mu T^A t_R \right] \sum_q \left[\bar{q} \gamma_\mu T^A q \right]$$

$$\mathcal{O}_{Ra} = \left[\bar{t}_R \gamma^\mu T^A t_R \right] \sum_q \left[\bar{q} \gamma_\mu \gamma_5 T^A q \right]$$

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer

No contribution to A_{FB} $t_R \rightarrow Q_L$

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

Forward-Backward Asymmetry

Does it fit the distributions?

Provides a correct description

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Generation

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer

FR Implementation

$$\mathcal{O}_{WWW} = \text{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$

```
M$InteractionOrderHierarchy = {
{NP,1}
}
M$InteractionOrderLimit = {
{NP,2}
}
CWWWL2== {
      ParameterType -> External,
      ParameterName -> CWWWL2,
      BlockName -> DIM6,
        InteractionOrder -> {{QED,-3},{ NP, 2}},
      Value -> 1,
       TeX -> Subscript[C,WWW]/\[CapitalLambda]^2,
      Description -> "coefficient of OWWW in TeV-2"},
  LWWW := ExpandIndices[CWWWL2*10^(-6) gw^3/4 Module[{mu, nu, rho, L, J, K},
  Eps[L, J, K] FS[Wi, mu, nu, L] FS[Wi, nu, rho, J] FS[Wi, rho,
  mu,K]],FlavorExpand->SU2W] ;
```


Make an efficient generation

- When studying Operators, we want to study those one (or two) at the time.
- Theoretician wants to provide a single model

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

Model too generic

Solution 1:

- Assign a specific order to each operator
 generate p p > w+ w- NP2=0 NP3=0 NP4=0 NP5=0 NP6=0
 - Not beautiful

Model too generic

Solution 1:

- Assign a specific order to each operator
 generate p p > w+ w- NP2=0 NP3=0 NP4=0 NP5=0 NP6=0
 - Not beautiful
- Solution II:
 - Set the associated coupling value to zero and keep the diagram

generate p p > w+ w-

Not efficient and not 100% safe

Model too generic

Solution III:

• Restrict the model to what you need!

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer

Friday, October 5, 12

Model too generic

Solution III:

- Restrict the model to what you need!
 - Put your param_card in the model directory with name "restrict_NAME"
 - import your model as "MODEL-NAME"

Model too generic

Solution III:

- Restrict the model to what you need!
 - Put your param_card in the model directory with name "restrict_NAME"
 - import your model as "MODEL-NAME"

What is this doing ?

- Remove all interaction with zero coupling
- Optimize Model
- Simplify Param_card

Model too generic

Solution III: Examples: sm-ckm sm-lepton_masses sm-no_b_mass sm-no_masses sm-no_tau_mass sm-zeromass_ckm

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Example b b~ > t t~ QCD=0 SM

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

Exampleb b~ > t t~ QCD=0SM-no_b_massSM

diagram 1 QCD=0, QED=2

diagram 2 QCD=0, QED=2

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer

MadGraph 5 Olivier Mattelaer

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

Example b b~ > t t~ QCD=0

SM-no_b_mass

SM

Param card:

INFORMATION FOR MASS
#######################################
Block mass
6 1.730000e+02 # MT
15 1.777000e+00 # MTA
23 9.118800e+01 # MZ
25 1.200000e+02 # MH
Not dependent paramater.
Those values should be edited fo
analytical expression. MG5 ignor
but they are important for inter
to external program such as Pyth:
12 0.000000 # ve : 0.0
14 0.000000 # vm : 0.0
16 0.000000 # vt : 0.0
2 0.000000 # u : 0.0
4 0.000000 # c : 0.0
1 0.000000 # d : 0.0
3 0.000000 # s : 0.0
5 0.000000 # b : 0.0

Param	card:
	** **********************************
	## INFORMATION FOR MASS
	#######################################
	Block mass
	5 4.700000e+00 # MB
	6 1.730000e+02 # MT
	15 1.777000e+00 # MTA
	23 9.118800e+01 # MZ
	25 1.200000e+02 # MH
	## Not dependent paramater.
	## Those values should be edited fol
	## analytical expression. MG5 ignore
	## but they are important for inter
	<pre>## to external program such as Pyth:</pre>
	12 0.000000 # ve : 0.0
	14 0.000000 # vm : 0.0
	16 0.000000 # vt : 0.0
	2 0.000000 # u : 0.0
	4 0.000000 # c : 0.0
	1 0.000000 # d : 0.0
	3 0.000000 # s : 0.0

Friday, October 5, 12

Example b b~ > t t~ QCD=0

SM-no_b_mass

Param card: Param card: ################################### **## INFORMATION FOR MASS ## INFORMATION FOR MASS** Block mass Block mass 5 4.700000e+00 # MB 6 1.730000e+02 # MT 15 1.777000e+00 # MTA 6 1./30000e+02 # MT 23 9.118800e+01 # MZ 15 1.777000e+00 # MTA 25 1.200000e+02 # MH 23 9.118800e+01 # MZ 25 1.200000e+02 # MH ## Not dependent paramater. ## Those values should be edited for Not dependent paramater. ## ## analytical expression. MG5 ignor ## Those values should be edited for ## analytical expression. MG5 ignore ## but they are important for inter ## to external program such as Pyth: ## but they are important for inter 12 0.000000 # ve : 0.0 ## to external program such as Pyth: 14 0.000000 # vm : 0.0 12 0.000000 # ve : 0.0 16 0.000000 # vt : 0.0 14 0.000000 # vm : 0.0 16 0.000000 # vt : 0.0 2 0.000000 # u : 0.0 4 0.000000 # c : 0.0 2 0.000000 # u : 0.0 4 0.000000 # c : 0.0 1 0.000000 # d : 0.0 3 0.000000 # c · 0.0 1 0.000000 # d : 0.0 5 0.000000 # b : 0.0 3 0.000000 # s : 0.0

Friday, October 5, 12

Model too generic

Solution III: Examples: sm-ckm sm-lepton_masses sm-no_b_mass sm-no_masses sm-no_tau_mass sm-zeromass_ckm

Advantages

Easy to implement for the final user

Quite optimal

Model too generic

Solution III: Examples: sm-ckm sm-lepton_masses sm-no_b_mass sm-no_masses sm-no_tau_mass sm-zeromass_ckm

Advantages

Easy to implement for the final user

Quite optimal

Drawbacks

Potential accidental removal

The number of restriction card to cover all cases

Model Too Generic

Solution IV:

• Create your restriction card on the flight:

I. Filling in the form:	V.
Model:	EWdim6 ÷
Options:	30
	sm customization ✓ diagonal ckm ✓ c mass = 0 b mass = 0 ✓ muon mass = 0 ✓ electron mass = 0
Input Processes:	icht.
	First process
	Process: Order Automatic Add Decay
	p and j definitions: $p=j=d u s c d \sim u \sim s \sim c \sim g \ddagger$ Sum over leptons: $I+=e+$, $mu+$; $I-=e-$, $mu-$; $vI=ve$, vm , $vt;$ $vI\sim=ve\sim$, $vm\sim$, $vt\sim$
	Add process Submit

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Model Too Generic

Solution IV:

• Create your restriction card on the flight:

m_5>customize_model Available Now! INFO: LOGG particles INFO: load vertices sm customization: 1: diagonal ckm [True] 2: c mass = 0 [True] 3: b mass = 0 [False] 4: tau mass = 0 [False] 5: muon mass = 0 [True] 6: electron mass = 0 [True] Adding Dim6 Operator: 7: CWWW [True] 8: CW [True] 9: CB [True] 10: CWWW CP violating [False] 11: CW CP violating [False] Enter a number to change it's status or press enter to validate [0, 1, 2, 3, 4, 5, 6, 7, 8, ...][60s to answer]

This require some work of the model builder

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

• Require an additional file in UFO: build_restrict.py

Not automatic ! But easy to write !

Allow a lot of freedom

MadGraph is here to help you!

Conclusion

- We have the tools to make analysis
 Effective Lagrangians available (FR/MG)
- Dimension 6 operators are simple and powerful automatic gauge invariance
 - larity
 - guidance for experimentalist
- Dimension 6 operators can explain the data

Friday, October 5, 12

Order Restriction

• You can have up to ONE dimension six operator by diagram

$$\mathcal{M} = \mathcal{M}_{SM} + \frac{1}{\Lambda^2} \mathcal{M}_{one} + \underbrace{\frac{1}{\Lambda^4} \mathcal{M}_{two}}_{\mathbf{L}^{4}}$$

Equivalent to dimension 8 operator

Order Restriction

• You can have up to ONE dimension six operator by diagram

Order Restriction

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Three Gauge Couplings Comparison with Anomalous Coupling

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

SM Processes

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

Operator Affecting those processes

We don't consider Operator with quark
 Not the best processes to study those

Conserving CP $\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}]$ $\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$ $\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$ Not Conserving CP $\mathcal{O}_{\tilde{W}WW} = \operatorname{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$ $\mathcal{O}_{\tilde{W}} = (D_{\mu}\Phi)^{\dagger}\tilde{W}^{\mu\nu}(D_{\nu}\Phi)$

Unitarity

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

MadGraph 5 Olivier Mattelaer

Comparison with Anomalous Coupling

$$\mathcal{L} = ig_{WWV} \left(g_{1}^{V} W_{\mu\nu}^{+} W^{-\mu} - W^{+\mu} W_{\mu\nu}^{-}) V^{\nu} + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} V_{\rho}^{\mu} \right. \\ \left. + ig_{4}^{V} V_{\mu}^{+} W_{\nu}^{-} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) - ig_{5}^{V} {}^{\mu\nu\rho\sigma} (W_{\mu}^{+} \partial_{\rho} W_{\nu}^{-} - \partial_{\rho} W_{\mu}^{+} W_{\nu}^{-}) V_{\sigma} \right. \\ \left. + \tilde{\kappa}_{V} W_{\mu}^{+} W_{\nu}^{-} \tilde{V}^{\mu\nu} + \frac{\tilde{\lambda}_{V}}{m_{W}^{2}} W_{\mu}^{\nu+} W_{\nu}^{-\rho} \tilde{V}_{\rho}^{\mu} \right)$$

- This is not Gauge Invariant
- No New Physics scale
- No Suppression : Dimension 4 and 6 but also 8 or more if extra derivatives are added
- Breaking unitarity
- Not valid loop description

Link between the two

$$g_1^Z = 1 + c_W \frac{m_Z^2}{2\Lambda^2}$$

$$\kappa_\gamma = 1 + (c_W + c_B) \frac{m_W^2}{2\Lambda^2}$$

$$\kappa_Z = 1 + (c_W - c_B \tan^2 \theta_W) \frac{m_W^2}{2\Lambda^2}$$

$$\delta_\gamma = \lambda_Z = c_{WWW} \frac{3g^2 m_W^2}{2\Lambda^2}$$

$$q_4^V = g_5^V = 0$$

$$\tilde{\kappa}_\gamma = c_{\tilde{W}} \frac{m_W^2}{2\Lambda^2}$$

$$\tilde{\kappa}_Z = -c_{\tilde{W}} \tan^2 \theta_W \frac{m_W^2}{2\Lambda^2}$$

$$\tilde{\lambda}_\gamma = \tilde{\lambda}_Z = c_{\tilde{W}WW} \frac{3g^2 m_W^2}{2\Lambda^2}$$

- Gauge Invariance
- New Scale Suppression

$$\Delta g_1^Z = \Delta \kappa_Z + \tan^2 \theta_W \Delta \kappa_\gamma$$
$$0 = \tilde{\kappa}_Z + \tan^2 \theta_W \tilde{\kappa}_\gamma$$

Provide Guidance

High multiplicity

• Automatic gauge invariance.

FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012

Friday, October 5, 12

MadGraph 5 Olivier Mattelaer