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Plan of the lectures

• Motivation For Dimension 6 Operators

• Example: forward-backward Asymmetry

• MG5 Generation
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FIG. 7: AFB as a function of Mtt̄ (left) and the same distribution with a best-fit line superimposed (right).

CDF Run II Preliminary L = 8.7 fb�1

Data NLO (QCD+EW) tt̄ + Bkg.
Mtt̄ AFB (± stat.) AFB
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600� 700GeV/c2 0.273 ± 0.103 0.065
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Slope ↵Mtt̄

of Best-Fit Line (8.9± 2.3)⇥ 10�4 2.2⇥ 10�4

TABLE V: Measured and expected asymmetries as a function of Mtt̄.
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FIG. 8: Alternative binning of AFB as a function of Mtt̄ (left) and the same distribution with a best-fit line superimposed
(right).
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Chapter3
Effective theory for the top pair
productions

Based on

C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni, and G. Servant, "Non-resonant
New Physics in Top Pair Production at Hadron Colliders"’, JHEP, vol. 03, p. 125,

2011, 1010.6304.

C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni, and G. Servant, "An effective
approach to same sign top pair production at the LHC and the forward-backward

asymmetry at the Tevatron", 2011, 1104.1798.

Top quark physics is among the central physics topics at the Tevatron and at the LHC.
The top being the only quark with a coupling to the Higgs of order one, it is expected
to play a special role in electroweak symmetry breaking and as a result its coupling
to new physics could be large. Searching for beyond the SM physics in observables
involving the top quark is, therefore, strongly motivated. Moreover, the discrepancy
between the measured forward-backward asymmetry and its SM prediction tends to
confirm this theoretical presumption.

49

C. Degrande
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A Famous Example: Fermi Theory

• The muon decay can (and was) be described by a 
Dimension 6 operator

mu+ > e+ ve vm~ page 1/1

Diagrams made by MadGraph5

e+
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ve

3

w+

vm~

4

mu+1

 diagram 1 QCD=0, QED=2
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Taylor expansion
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Effective Field Theory

L = LSM +
X ci

⇤2
Oi
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Effective Field Theory

L = LSM +
X ci

⇤2
Oi

H ,G ,W , B

L,Q, lR, uR, dR

Bosons 1

Fermion 3/2

Covariant 
derivative

1

Strength 
tensor

2

Dµ

Fµ⌫

Type Name Dimension
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Effective Field Theory

• 59 Dimension 6 Operators If
☞ Preserve the SM gauge symmetries
☞ Preserve B-L accidental symmetries
☞ We consider only one flavor

• Only One Dimension 5 Operator:

Give a mass to the neutrino

L = LSM +
X ci

⇤2
Oi

The number of possible Operators are huge

O = LHLH
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Effective Field Theory

• Only few Operators for one process and different 
effects

L = LSM +
X ci

⇤2
Oi
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Effective Field Theory

• Only few Operators for one process and different 
effects

• Unitary Satisfied at low Energy
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• Unitary Satisfied at low Energy

• More than one vertex in an operator

L = LSM +
X ci

⇤2
Oi

Friday, October 5, 12



UIUC

   FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012                                                     MadGraph 5 Olivier Mattelaer

Effective Field Theory

• Only few Operators for one process and different 
effects

• Unitary Satisfied at low Energy

• More than one vertex in an operator

L = LSM +
X ci

⇤2
Oi
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Effective Field Theory

• Only few Operators for one process and different 
effects

• Unitary Satisfied at low Energy

• More than one vertex in an operator

• Description valid at NLO (Loop and radiation)

L = LSM +
X ci

⇤2
Oi
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Forward-Backward Asymmetry
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Forward-Backward Asymmetry

1.3. Top scenery 29

The first measurement of the tt̄ invariant mass distribution was done at CDF [29]
with 2.7 fb−1 in the semileptonic channel and showed no deviation from the SM.
The updated measurement with 4.8 fb−1 [30] confirms this conclusion (see Fig. 1.3)
as well as D0 analysis with 3.6 fb−1 [31]. At the LHC, CMS has already started to
constrain the presence of new resonances with the tt̄ invariant mass distribution [32].

Figure 1.3: tt̄ invariant mass distribution measurement by CDF [30] and the corre-
sponding limit on narrow resonances.

1.3.2 Forward-backward Asymmetry

The forward-backward asymmetry in tt̄ production is defined as

AFB ≡
σ (cos θt > 0)− σ (cos θt < 0)

σ (cos θt > 0) + σ (cos θt < 0)
(1.57)

where θt is the angle between the momenta of the incoming parton in the proton and
the outgoing top quark in the laboratory or tt̄ rest frame. In the Standard Model, there
are no preferred directions for the top and antitop quarks at the lowest order. A positive
asymmetry is generated at NLO, i.e., the top quark prefers to go in the direction of the
incoming quark and the antitop quark in the direction of the incoming antiquark [33]:

ASM,lab
FB = 0.05± 0.015 (1.58)

in the laboratory frame. The recent measurements of AFB at the Tevatron show an
intriguing deviation from the SM prediction [34–36]. The most precise CDF result
(semileptonic channel with 5.3 fb−1) [37]

AEXP,lab
FB = 0.15± 0.05(stat)± 0.024(syst), (1.59)

p̄p

t
✓t

t̄
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Figure 1.3: tt̄ invariant mass distribution measurement by CDF [30] and the corre-
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The forward-backward asymmetry in tt̄ production is defined as

AFB ≡
σ (cos θt > 0)− σ (cos θt < 0)

σ (cos θt > 0) + σ (cos θt < 0)
(1.57)

where θt is the angle between the momenta of the incoming parton in the proton and
the outgoing top quark in the laboratory or tt̄ rest frame. In the Standard Model, there
are no preferred directions for the top and antitop quarks at the lowest order. A positive
asymmetry is generated at NLO, i.e., the top quark prefers to go in the direction of the
incoming quark and the antitop quark in the direction of the incoming antiquark [33]:

ASM,lab
FB = 0.05± 0.015 (1.58)

in the laboratory frame. The recent measurements of AFB at the Tevatron show an
intriguing deviation from the SM prediction [34–36]. The most precise CDF result
(semileptonic channel with 5.3 fb−1) [37]

AEXP,lab
FB = 0.15± 0.05(stat)± 0.024(syst), (1.59)

p̄p

t
✓t

t̄

ASM
FB = 0.066± 0.007
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FIG. 7: AFB as a function of Mtt̄ (left) and the same distribution with a best-fit line superimposed (right).

CDF Run II Preliminary L = 8.7 fb�1

Data NLO (QCD+EW) tt̄ + Bkg.
Mtt̄ AFB (± stat.) AFB

< 400GeV/c2 -0.006 ± 0.031 0.012
400� 450GeV/c2 0.065 ± 0.040 0.023
450� 500GeV/c2 0.118 ± 0.051 0.022
500� 550GeV/c2 0.159 ± 0.069 0.041
550� 600GeV/c2 0.118 ± 0.088 0.066
600� 700GeV/c2 0.273 ± 0.103 0.065
� 700GeV/c2 0.306 ± 0.136 0.107

Data NLO (QCD+EW) tt̄ + Bkg.
Slope ↵Mtt̄

of Best-Fit Line (8.9± 2.3)⇥ 10�4 2.2⇥ 10�4

TABLE V: Measured and expected asymmetries as a function of Mtt̄.
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FIG. 8: Alternative binning of AFB as a function of Mtt̄ (left) and the same distribution with a best-fit line superimposed
(right).

Friday, October 5, 12



UIUC

   FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012                                                     MadGraph 5 Olivier Mattelaer

Forward-Backward Asymmetry

1.3. Top scenery 29

The first measurement of the tt̄ invariant mass distribution was done at CDF [29]
with 2.7 fb−1 in the semileptonic channel and showed no deviation from the SM.
The updated measurement with 4.8 fb−1 [30] confirms this conclusion (see Fig. 1.3)
as well as D0 analysis with 3.6 fb−1 [31]. At the LHC, CMS has already started to
constrain the presence of new resonances with the tt̄ invariant mass distribution [32].

Figure 1.3: tt̄ invariant mass distribution measurement by CDF [30] and the corre-
sponding limit on narrow resonances.

1.3.2 Forward-backward Asymmetry

The forward-backward asymmetry in tt̄ production is defined as

AFB ≡
σ (cos θt > 0)− σ (cos θt < 0)

σ (cos θt > 0) + σ (cos θt < 0)
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Dimension 6 operators

The effective Lagrangian

The Lagrangian
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Forward-Backward Asymmetry
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Does it fit the distributions?

Provides a correct description
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Generation
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FR Implementation
OWWW = Tr[Wµ⌫W

⌫⇢Wµ
⇢ ]
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Make an efficient generation

• When studying Operators, we want to study those 
one (or two) at the time.

• Theoretician wants to provide a single model

How to have an efficient generation?
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Model too generic
Solution 1:

• Assign a specific order to each operator

☞ Not beautiful

generate p p > w+ w- NP2=0 NP3=0 NP4=0 NP5=0 NP6=0
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Model too generic
Solution 1:

• Assign a specific order to each operator

☞ Not beautiful

generate p p > w+ w- NP2=0 NP3=0 NP4=0 NP5=0 NP6=0

Solution 1I:

• Set the associated coupling value to zero and keep 
the diagram

☞ Not efficient and not 100% safe

generate p p > w+ w-
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Model too generic

• Restrict the model to what you need!

• Put your param_card in the model directory
with name “restrict_NAME”

• import your model as “MODEL-NAME”

What is this doing ?

Solution 1II:

• Remove all interaction with zero coupling

• Optimize Model

• Simplify Param_card
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Model too generic
Solution 1II:

Examples: sm-ckm sm-lepton_masses   sm-no_b_mass       
sm-no_masses sm-no_tau_mass                
sm-zeromass_ckm
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Example
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b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

h

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 3 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 4 QCD=0, QED=2

b b~ > t t~ QCD=0
SM

Friday, October 5, 12



UIUC

   FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012                                                     MadGraph 5 Olivier Mattelaer

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 3 QCD=0, QED=2

Example

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

h

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 3 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 4 QCD=0, QED=2

b b~ > t t~ QCD=0
SMSM-no_b_mass

Friday, October 5, 12



UIUC

   FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012                                                     MadGraph 5 Olivier Mattelaer

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 3 QCD=0, QED=2

Example

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

h

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 3 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 4 QCD=0, QED=2

b b~ > t t~ QCD=0
SMSM-no_b_mass

restriction card:

Friday, October 5, 12



UIUC

   FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012                                                     MadGraph 5 Olivier Mattelaer

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 3 QCD=0, QED=2

Example

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

h

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 3 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 4 QCD=0, QED=2

b b~ > t t~ QCD=0
SMSM-no_b_mass

restriction card:

Friday, October 5, 12



UIUC

   FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012                                                     MadGraph 5 Olivier Mattelaer

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 3 QCD=0, QED=2

Example

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

h

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 3 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 4 QCD=0, QED=2

b b~ > t t~ QCD=0
SMSM-no_b_mass

restriction card:

Friday, October 5, 12



UIUC

   FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012                                                     MadGraph 5 Olivier Mattelaer

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 3 QCD=0, QED=2

Example

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

h

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 3 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 4 QCD=0, QED=2

b b~ > t t~ QCD=0
SMSM-no_b_mass

restriction card:

Friday, October 5, 12



UIUC

   FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012                                                     MadGraph 5 Olivier Mattelaer

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 3 QCD=0, QED=2

Example

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

h

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 3 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 4 QCD=0, QED=2

b b~ > t t~ QCD=0
SMSM-no_b_mass

Param_card: Param_card:

Friday, October 5, 12



UIUC

   FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012                                                     MadGraph 5 Olivier Mattelaer

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 3 QCD=0, QED=2

Example

b b~ > t t~ QCD=0 page 1/1

Diagrams made by MadGraph5

b

1

b~

2

a

t

3

t~

4

 diagram 1 QCD=0, QED=2

b

1

b~

2

h

t

3

t~

4

 diagram 2 QCD=0, QED=2

b

1

b~

2

z

t

3

t~

4

 diagram 3 QCD=0, QED=2

b

1

t

3

w-

b~

2
t~

4

 diagram 4 QCD=0, QED=2

b b~ > t t~ QCD=0
SMSM-no_b_mass

Param_card: Param_card:

Friday, October 5, 12



UIUC

   FR/MG School on LHC Phenomenology, Sept 30-Oct 05 2012                                                     MadGraph 5 Olivier Mattelaer

Model too generic

• Advantages
☞ Easy to implement for the final user
☞ Quite optimal

• Drawbacks
☞ Potential accidental removal
☞ The number of restriction card to cover all cases

Solution 1II:
Examples: sm-ckm sm-lepton_masses   sm-no_b_mass       

sm-no_masses sm-no_tau_mass                
sm-zeromass_ckm
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☞ Quite optimal

• Drawbacks
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Model Too Generic

• Create your restriction card on the flight:

Solution IV:

Web Page In Development
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Model Too Generic

• Create your restriction card on the flight:

Solution IV:

This require some work of the model builder

Available Now!
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• Require an additional file in UFO: build_restrict.py

initialisation

create category

options and insert 
value in the card

Not automatic ! But easy to write !

Allow a lot of freedom

MadGraph is here to help you!
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Conclusion

• We have the tools to make analysis
☞ Effective Lagrangians available (FR/MG)

• Dimension 6 operators are simple and powerful
☞ automatic gauge invariance
☞ unitarity
☞ guidance for experimentalist

• Dimension 6 operators can explain the data
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Order Restriction

• You can have up to ONE dimension six operator 
by diagram

M = M
SM

+
1

⇤2
M

one

+
1

⇤4
M

two

Equivalent to dimension 8 operator
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by diagram
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Order Restriction

• You can have up to ONE dimension six operator 
by diagram

M = M
SM

+
1

⇤2
M

one

+
1

⇤4
M

two

Equivalent to dimension 8 operatorMaximal order allowed

UFO File: coupling_order
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Three Gauge Couplings
Comparison with Anomalous Coupling
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SM Processes
s s~ > w+ w- WEIGHTED=4 page 1/1

Diagrams made by MadGraph5
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Operator Affecting those processes

• We don’t consider Operator with quark
☞ Not the best processes to study those

OWWW = Tr[Wµ⌫W
⌫⇢Wµ

⇢ ]

OW = (Dµ�)
†Wµ⌫(D⌫�)

OB = (Dµ�)
†Bµ⌫(D⌫�)

OW̃WW = Tr[W̃µ⌫W
⌫⇢Wµ

⇢ ]

OW̃ = (Dµ�)
†W̃µ⌫(D⌫�)

Conserving CP

Not Conserving CP
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Unitarity
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Comparison with Anomalous Coupling

• This is not Gauge Invariant

• No New Physics scale

• No Suppression : Dimension 4 and 6 but also 8 or 
more if extra derivatives are added

• Breaking unitarity

• Not valid loop description
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Link between the two

dimension six operators. By reframing the results in terms of dimension six operators, all of
the desirable features of the effective field theory, listed in Section 2, remain intact.

When anomalous couplings are derived from an effective field theory it is important to
remember that they, like the underlying effective field theory, are only valid below the scale
of new physics, Λ. This is in stark contrast to the original use of anomalous couplings, which
were regarded as being valid to arbitrarily high energy [3, 6].

The effective field theory approach described in the previous section allows one to cal-
culate the parameters gZ1 , κγ , etc., in terms of the coefficients of the five dimension-six
operators. Calling these coefficients cWWW , cW , cB, cW̃WW , cW̃ , one finds [9, 13]

gZ1 = 1 + cW
m2

Z

2Λ2
(12)

κγ = 1 + (cW + cB)
m2

W

2Λ2
(13)

κZ = 1 + (cW − cB tan2 θW )
m2

W

2Λ2
(14)

λγ = λZ = cWWW

3g2m2
W

2Λ2
(15)

gV4 = gV5 = 0 (16)

κ̃γ = cW̃
m2

W

2Λ2
(17)

κ̃Z = −cW̃ tan2 θW
m2

W

2Λ2
(18)

λ̃γ = λ̃Z = cW̃WW

3g2m2
W

2Λ2
(19)

Defining ∆gZ1 = gZ1 − 1, ∆κγ,Z = κγ,Z − 1, we find the relation [9]

∆gZ1 = ∆κZ + tan2 θW∆κγ (20)

This, together with the relation λγ = λZ , reduces the five C and P violating parameters
down to three. For the C and/or P violating parameters, we find the relation

0 = κ̃Z + tan2 θW κ̃γ (21)

This, together with the relations λ̃γ = λ̃Z and gZ4 = gZ5 = 0 reduces the six C and/or P
violating parameters down to just two. Thus the effective field theory approach not only
has the many virtues that are lacking in the anomalous coupling approach, it is far simpler.
It provides a well motivated framework with a minimal set of parameters, which is often
required due to the limited precision of the experiments.

These relations amongst the anomalous couplings are present because we have restricted
our attention to dimension six operators, which are expected to be dominant. If one includes
dimension eight operators, one generally finds that these relations are no longer valid [9].
Nevertheless, one expects violations of these relations to be small. This is an example of
one of the desirable features of an effective field theory described in Section 2. The theory
is general enough to describe all possible new physics, but provides guidance as to the most
likely place to find it.

7
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κ̃Z = −cW̃ tan2 θW
m2

W

2Λ2
(18)

λ̃γ = λ̃Z = cW̃WW

3g2m2
W

2Λ2
(19)

Defining ∆gZ1 = gZ1 − 1, ∆κγ,Z = κγ,Z − 1, we find the relation [9]

∆gZ1 = ∆κZ + tan2 θW∆κγ (20)

This, together with the relation λγ = λZ , reduces the five C and P violating parameters
down to three. For the C and/or P violating parameters, we find the relation

0 = κ̃Z + tan2 θW κ̃γ (21)

This, together with the relations λ̃γ = λ̃Z and gZ4 = gZ5 = 0 reduces the six C and/or P
violating parameters down to just two. Thus the effective field theory approach not only
has the many virtues that are lacking in the anomalous coupling approach, it is far simpler.
It provides a well motivated framework with a minimal set of parameters, which is often
required due to the limited precision of the experiments.

These relations amongst the anomalous couplings are present because we have restricted
our attention to dimension six operators, which are expected to be dominant. If one includes
dimension eight operators, one generally finds that these relations are no longer valid [9].
Nevertheless, one expects violations of these relations to be small. This is an example of
one of the desirable features of an effective field theory described in Section 2. The theory
is general enough to describe all possible new physics, but provides guidance as to the most
likely place to find it.
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High multiplicity

• Automatic gauge invariance.

• z z > w+ w-
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