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Master equation for 
hadron colliders

Parton-level cross section from matrix elements: model 
and process dependent

Parton density (or distribution) functions: process 
independent

Differences between colliders given by parton 
luminosities
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Parton density 
functions

Parton-level 
(differential) 
cross section
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Perturbative 
expansion

The parton-level cross section can be computed as a series in 
perturbation theory, using the coupling constant as an expansion 
parameter, schematically:

Including higher corrections improves predictions and reduces 
theoretical uncertainties
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Improved predictions

Remember, predictions are inclusive: also at LO initial state radiation 
is included via the PDF; final state radiation by the definition of the 
parton, which represents all final state evolutions

Due to these approximations, Leading Order predictions can depend 
strongly on the renormalization and factorization scales

Including higher order corrections reduces the dependence on these 
scales
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Going NLO

At NLO the dependence on the renormalization and factorization scales is 
reduced

First order where scale dependence
in the running coupling and the
PDFs is compensated for via the loop
corrections: first reliable estimate
of the total cross section

Better description of final state:
 impact of extra radiation included
(e.g. jets can have substructure)

Opening of additional initial state
partonic channels

6
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NLO corrections

NLO corrections have three parts:

The Born contribution, i.e. the Leading order.

Virtual (or Loop) corrections: formed by an amplitude with a 
closed loop of particles interfered with the Born amplitudes

Real emission corrections: formed by amplitudes with one 
extra parton compared to the Born process

Both Virtual and Real emission have one power of αs extra 
compared to the Born process
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NLO predictions
As an example, consider Drell-Yan Z/γ* production
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Going NNLO...?

NNLO is the current state-of-the-art. There are only a few results available: 
Higgs, Drell-Yan, ttbar (qqbar induced only)

Why do we need it?

An NNLO calculation gives control
of the uncertainties in a calculation

It is “mandatory” if NLO corrections are
very large to check the behavior of the
perturbative series

It is the best we have! It is needed for
Standard Candles and very precise tests
of perturbation theory, exploiting all the available information, e.g. for 
determining NNLO PDF sets

9
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Predictions at NNLO

Why?

● A NNLO computation gives control on the 
uncertainties of a perturbative calculation.

● It’s “mandatory” if NLO corrections are very large to 
check the behaviour of the perturbative series

● It’s the best we have! It is needed for Standard Candles 
and for really exploiting all the available information, for 
example that of NNLO PDF’s.
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Higgs predictions at 
NNLO

LO calculation is not reliable,

but the perturbative series stabilizes 
at NNLO

NLO estimation of the uncertainties 
(by scale variation) works reasonably 
well

10
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Higgs predictions at NNLO

• LO  calculation is not reliable.

• The perturbative series stabilizes. 

•NLO estimation of higher orders 
effects by scale uncertainty works 
reasonably well.
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Difficulties

Let us focus on NLO... there are already enough steps to be taken:

Virtual amplitudes: how to compute the loops automatically in a 
reasonable amount of time

How to deal with infra-red divergences: virtual corrections and real-
emission corrections are separately divergent and only their sum is 
finite (for IR-safe observables) according to the KLN theorem

How to match these processes to a parton shower without double 
counting

12
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Why an automatic 
tool?

To save time
Trade human time and expertise on computing one process at the 
time with time on physics and phenomenology.

Robustness
Modular code structure means that elements can be checked 
systematically and extensively once and for all. Trust can easily be 
build.

Wide accessibility
One framework for all. Available to everybody for an unlimited 
set of applications. Suitable for Experimental collaborations.

13
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NLO predictions
As an example, consider Drell-Yan production
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Branching
In the soft and collinear region, the branching of a gluon from a quark can 
be written as

where kt is the transverse momentum of the gluon, kt=E sinθ.

The singularities cancel against the singularities in the virtual corrections, 
which result from the integral over the loop momentum of the function

The sum is finite for observables that cannot distinguish between two 
collinear partons (kt ⟶ 0); a hard and a soft parton (z ⟶ 1); and a single 
parton (in the virtual contributions)

16

3.2 Initial-state parton splitting, DGLAP evolution

3.2.1 Final and initial-state divergences

In Eq. (26a) we wrote the universal form for the final-state ‘splitting’ of a quark into a quark and a soft

gluon. Let’s rewrite it with different kinematic variables, considering a hard process h with cross section
σh, and examining the cross section for h with an extra gluon in the final state, σh+g. We have

p
zp

E =

!

(1!z)p

"
h σh+g ! σh

αsCF

π

dz

1− z

dk2t
k2t

, (41)

where E in Eq. (26a) corresponds to E = (1 − z)p and we’ve introduced kt = E sin θ ! Eθ. If we
avoid distinguishing a collinear q+ g pair from a plain quark (measurements with IRC safe observables)
then, as we argued before, the divergent part of the gluon emission contribution always cancels with a

related virtual correction

p p
"
h σh+V ! −σh

αsCF

π

dz

1− z

dk2t
k2t

. (42)

Now let us examine what happens for initial-state splitting, where the hard process occurs after the

splitting and the momentum entering the hard process is modified p → zp:

zp
p

(1!z)p

"
h σg+h(p) ! σh(zp)

αsCF

π

dz

1− z

dk2t
k2t

, (43)

where we have made explicit the hard process’s dependence on the incoming momentum, and we assume

that σh involves momentum transfers ∼ Q % kt, so that we can ignore the extra transverse momentum
entering σh. For virtual terms, the momentum entering the process is unchanged, so we have

p p
"
h σg+h(p) ! −σh(p)

αsCF

π

dz

1− z

dk2t
k2t

, (44)

The total cross section then gets contributions with two different hard cross sections:

σg+h + σV+h !
αsCF

π

∫ Q2

0

dk2t
k2t

︸ ︷︷ ︸

infinite

∫ 1

0

dz

1− z
[σh(zp)− σh(p)]

︸ ︷︷ ︸

finite

. (45)

Note the limits on the integrals, in particular theQ2 upper limit on the transverse-momentum integration:

the approximations we’re using are valid as long as the transverse momentum emitted in the initial state is

much smaller than the momentum transfersQ that are present in the hard process. Of the two integrations
in Eq. (45), the one over z is finite, because in the region of the soft divergence, z → 1, the difference of
hard cross sections, [σh(zp) − σh(p)], tends to zero. In contrast, the kt integral diverges in the collinear
limit: the cross section with an incoming parton (and virtual corrections) appears not to be collinear safe.

This is a general feature of processes with incoming partons: so how are we then to carry out calculations

with initial-state hadrons?

In Section 2.3.1, when trying to make sense of final-state divergences, we introduced a (non-

perturbative) cutoff. Let’s do something similar here, with a cutoff, µF, called a factorization scale
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Infrared 
cancellation

The KLN theorem tells us that divergences from virtual and 
real-emission corrections cancel in the sum for observables 
insensitive to soft and collinear radiation (“IR-safe observables”)

When doing an analytic calculation in dimensional 
regularization this can be explicitly seen in the cancellation of 
the 1/є and 1/є2 terms (with є the regulator, є ➞ 0)

In the real emission corrections, the explicit poles enter after the 
phase-space integration (in d dimensions)

17
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Infrared safe 
observables

For an observable to be calculable in fixed-order perturbation 
theory, the observable should be infrared safe, i.e., it should be 
insensitive to the emission of soft or collinear partons.

In particular, if pi is a momentum occurring in the definition of an 
observable, it most be invariant under the branching
      pi ⟶ pj + pk,
whenever pj and pk are collinear or one of them is soft.

Examples

“The number of gluons” produced in a collision is not an 
infrared safe observable

“The number of hard jets defined using the kT algorithm with a 
transverse momentum above 40 GeV,” produced in a collision is 
an infrared safe observable

18
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phase-space integration

For complicated processes we have to result to numerical phase-space 
integration techniques (“Monte Carlo integration”), which can only be 
performed in an integer number of dimensions

Cannot use a finite value for the dimensional regulator and take the 
limit to zero in a numerical code

But we still have to cancel the divergences explicitly

Use a subtraction method to explicitly factor out the divergences from the 
phase-space integrals

19
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Example
Suppose we want to compute the integral (“real emission radiation”, 
where the 1-particle phase-space is referred to as the 1-dimensional x)

where                               and             is finite everywhere

Let’s introduce a regulator

for any non-integer non-zero value for     this integral is finite

We would like to factor out the explicit poles in     so that they can be 
canceled explicitly against the virtual corrections

20

f(x) =
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Subtraction method

Add and subtract the same term

We have factored out the 1/   divergence and are left with a finite integral

According to the KLN theorem the divergence cancels against the virtual 
corrections

21
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Limitations

Even though the divergence is factored, there are cancellations between 
large numbers: if for an observable    , if                                or we choose 
the bin-size too small, instabilities render the computation useless

We already knew that! KLN is sufficient; one must have infra-red 
safe observables and cannot ask for infinite resolution (need a finite 
bin-size)

Subtraction method is very flexible -> method of choice in automation

22

� 1
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dx
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Subtraction:

lim
x→0

O(x) �= O(0)O

“Plus distribution”
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NLO with Subtraction

With the subtraction method this is replace by

Terms between the brackets are finite. Can integrate them numerically and 
independent from one another in 4 dimensions
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Subtraction methods

                    should be defined such that 

1) it exactly matches the singular behavior of 

2) its form is convenient for numerical integration techniques

3) it is exactly integrable in d dimensions over the one-particle 
subspace                          , leading to soft and/or collinear 
divergences as explicit poles in the dimensional regulator

4) it is universal, i.e. process independent
➞ overall factor times the Born process 

24

G(Φm+1)
R(Φm+1)

�
ddΦ1G(Φm+1)
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Two methods

Catani-Seymour dipole 
subtraction

Most used method

Clear written paper on how to 
use this method in practice

Method evolved from 
cancellation of the soft 
divergence

Proven to work for simple as well 
as complicated processes

Automation in publicly available 
packages: MadDipole, 
AutoDipole, Helac-Dipoles, 
Sherpa

FKS subtraction
Not so well-known

(Probably) more efficient, 
because less subtraction terms 
are needed

Collinear divergences as a 
starting point

Proven to work for simple as well 
as complicated processes

Preferred method when 
interfacing NLO to a parton 
shower

Automated in aMC@NLO & 
POWHEG BOX

25
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Kinematics of 
counter events

If i and j are two on-shell particles that are present in a splitting that leads 
to an singularity, for the counter events we need to combine their momenta 
to a new on-shell parton that’s the sum of i+j

This is not possible without changing any of the other momenta in the 
process

When applying cuts or making plots, events and counter events might end-
up in different bins

Use IR-safe observables and don’t ask for infinite resolution! (KLN 
theorem)

26

i

j

i+j

Real emission Subtraction term
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Example in 4 charged 
lepton production

The NLO results shows a typical 
peak-dip structure that hampers 
fixed order calculations

27

Figure 3: As in fig. 1, for the inclusive η of the opposite-charge, Z-id matched lepton pairs (left
panel), and the inclusive ∆φ distance of the opposite-charge, non-Z-id matched lepton pairs (right
panel).

is quite small over the whole range in pT , but tends to grow larger towards larger pT . This

effect has the same origin as that observed in the right panel of fig. 1, but it is much more

moderate than there. This is due to the fact that in the present case the whole range in pT

is associated with complete NLO corrections. The PDF uncertainty is seen to be similar to

or slightly smaller than that due to scale variation; parton densities are well determined in

the x range probed here. Finally, there is no difference between the two leptonic channels

for this observable; as already mentioned above, this conclusion is independent of whether

one applies the Z-id cuts. The pT of the lepton pairs shown in the right panel of fig. 2

follows the same pattern as the one we have just discussed, but the differences between
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Event unweighting?
Another consequence of this kinematic mismatch is that we cannot 
generate events at fixed order NLO

Even though the integrals are finite, they are not bounded 

(compare with                 ), so there is no maximum to unweight 

against: a single event can have an arbitrarily large weight

Furthermore, event and counter event have different kinematics: 
which one to use for the unweighted event?

28
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Event generator
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Filling histograms 
on-the-fly

In practice, when we do the MC integration we generate 2 sets of 
momenta

1. An m-body set (for the Born, virtual and integrated counter terms)

2. An m+1-body (for the NLO) which we map to the counter term 
momenta (for the counter terms)

We compute the above formula; and apply cuts and fill histograms using 
the momenta corresponding to each term with the weight of that 
corresponding term

29
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�

d4Φm B(Φm)

+
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d4Φm

� �
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NLO...?
Are all (IR-safe) observables that we can compute using a NLO code 
correctly described at NLO? Suppose we have a NLO code for pp ⟶ ttbar

Total cross section

Transverse momentum of the top quark

Transverse momentum of the top-antitop pair

Transverse momentum of the jet

Top-antitop invariant mass

Azimuthal distance between the top and anti-top
30

LO VirtReal
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Limitations of Fixed 
Order calculations

In fact, for the observables that are not described at NLO accuracy, 
the situation is actually a bit worse:

In the small transverse
momentum region, this calculation
breaks down (it’s even negative in
the first bin!), and anywhere else it
is purely a LO calculation for V+1j

31

“LO”

“NLO”

transverse momentum [GeV]
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Summary

Both the virtual and real-emission corrections are IR divergent, but 
their sum is finite: We can use a subtraction methods to factor the 
divergences in the real-emission phase-space integration and cancel 
them explicitly against the terms in the virtual corrections

This generates events and counter events with slightly different 
kinematics. This means we cannot generate unweighed events 
(integrals are not bounded), but we can fill plots with weighted 
events: MC integrator (not an MC event generator)

When making plots or applying cuts, use only IR safe observables 
with finite resolution

Phase-space integrals are finite, but not bounded: cannot unweight 
the events

32
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improving MC’s

There are two ways to improve a Parton Shower Monte 
Carlo event generator with matrix elements:

ME+PS merging: Include matrix elements with more final 
state partons to describe hard, well-separated radiation 
better (already discussed by Fabio)

NLO+PS matching: Include full NLO corrections to the 
matrix elements to reduce theoretical uncertainties in the 
matrix elements. The real-emission matrix elements will 
describe the hard radiation

34
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Limitations of Fixed 
Order calculations

In fact, for the observables that are not described at NLO accuracy, 
the situation is actually a bit worse:

In the small transverse
momentum region, this calculation
breaks down (it’s even negative in
the first bin!), and anywhere else it
is purely a LO calculation for V+1j

35
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Difficulty: avoid double counting, ensure smooth distributions

Approaches are complementary: merge them!

ME

1. Fixed order calculation
2. Computationally expensive
3. Limited number of particles
4. Valid when partons are hard 

and well separated
5. Quantum interference correct
6. Needed for multi-jet description

Shower MC

1. Resums logs to all orders
2. Computationally cheap
3. No limit on particle multiplicity
4. Valid when partons are 

collinear and/or soft
5. Partial interference through 

angular ordering
6. Needed for hadronization

36

Matrix elements vs. 
Parton showers
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angular ordering
6. Needed for hadronization

36

Matrix elements vs. 
Parton showers

No longer true 
at NLO!

Wednesday 10 October 2012



Rikkert Frederix, University of Zurich

At NLO

We have to integrate the real emission over the complete 
phase-space of the one particle that can go soft or collinear to 
obtain the infra-red poles that will cancel against the virtual 
corrections

We cannot use the same matching procedure: requiring that 
all partons should produce separate jets is not infrared safe

We have to invent a new procedure to match NLO matrix 
elements with parton showers

37

2

gs + ...

Wednesday 10 October 2012



Rikkert Frederix, University of Zurich

Naive (wrong) approach

In a fixed order calculation we have contributions with m 
final state particles and with m+1 final state particles

We could try to shower them independently

Let               be the parton shower spectrum for an observable 
O, showering from a k-body initial condition

We can then try to shower the m and m+1 final states 
independently

38

I
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MC(O)
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Double counting

But this is wrong!

If you expand this equation out up to NLO, there are more terms then 
there should be and the total rate does not come out correctly

Schematically               for 0 and 1 emission is given by

And Δ is the Sudakov factor

39
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Sources of double 
counting

40

Parton shower

Born+Virtual:

Real emission:
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Sources of double 
counting

There is double counting between the real emission matrix 
elements and the parton shower: the extra radiation can come 
from the matrix elements or the parton shower

There is also an overlap between the virtual corrections and the 
Sudakov suppression in the zero-emission probability

40

Parton shower

...

...Born+Virtual:

Real emission:
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Double counting in 
virtual/Sudakov

The Sudakov factor Δ (which is responsible for the resummation of all 
the radiation in the shower) is the no-emission probability

It’s defined to be Δ = 1 - P, where P is the probability for a branching to 
occur

By using this conservation of probability in this way, Δ contains 
contributions from the virtual corrections implicitly

Because at NLO the virtual corrections are already included via explicit 
matrix elements, Δ is double counting with the virtual corrections

In fact, because the shower is unitary, what we are double counting in 
the real emission corrections is exactly equal to what we are double 
counting in the virtual corrections (but with opposite sign)!

41
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Avoiding double 
counting

There are two methods to circumvent this double counting

MC@NLO (Frixione & Webber)

POWHEG (Nason)

42
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MC@NLO procedure

To remove the double counting, we can add and subtract the 
same term to the m and m+1 body configurations

Where the MC are defined to be the contribution of the 
parton shower to get from the m body Born final state to the 
m+1 body real emission final state

43
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Frixione & Webber (2002)
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MC@NLO procedure
Parton shower

...

...Born+Virtual:

Real emission:

Double counting is explicitly removed by including the 
“shower subtraction terms”
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MC@NLO properties
Good features of including the subtraction counter terms

1. Double counting avoided: The rate expanded at NLO coincides 
with the total NLO cross section

2. Smooth matching: MC@NLO coincides (in shape) with the parton 
shower in the soft/collinear region, while it agrees with the NLO in 
the hard region

3. Stability: weights associated to different multiplicities are separately 
finite. The MC term has the same infrared behavior as the real 
emission (there is a subtlety for the soft divergence)

Not so nice feature (for the developer):

1. Parton shower dependence: the form of the MC terms depends on 
what the parton shower does exactly. Need special subtraction terms 
for each parton shower to which we want to match

45
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Double counting avoided

Expanded at NLO

46
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Smooth matching

Smooth matching:

Soft/collinear region:

Hard region (shower effects suppressed), ie. 

47
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Stability & 
unweighting

The MC subtraction terms are defined to be what the shower does 
to get from the m to the m+1 body matrix elements. Therefore the 
cancellation of singularities is exact in the (R - MC) term: there is no 
mapping of the phase-space in going from events to counter events 
as we saw in the FKS subtraction

The integral is bounded all over phase-space; we can therefore 
generate unweighted events!

“S-events” (which have m body kinematics)

“H-events” (which have m+1 body kinematics)
48
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Negative weights

We generate events for the two terms between the square brackets (S- and 
H-events) separately

There is no guarantee that these contributions are separately positive 
(even though predictions for infra-red safe observables should always be 
positive!)

Therefore, when we do event unweighting we can only unweight the 
events up to a sign. These signs should be taken into account when doing 
a physics analysis (i.e. making plots etc.)

The events are only physical when they are showered
49
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POWHEG
Consider the probability of the first emission of a leg (inclusive over 
later emissions)

In the notation used here, this is equivalent to

One could try to get NLO accuracy by replacing B with the NLO 
rate (integrated over the extra phase-space)

This naive definition is not correct: the radiation is still described only 
at leading logarithmic accuracy, which is not correct for hard 
emissions. 

50
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POWHEG
This is double counting.
To see this, expand the equation up to the first emission

which is not equal to the NLO

In order to avoid double counting, one should replace the definition 
of the Sudakov form factor with the following:

corresponding to a modified differential branching probability

Therefore we find for the POWHEG differential cross section
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Properties

The term in the square brackets integrates to one (integrated over 
the extra parton phase-space between scales Q0

2 and Q2)
(this can also be understood as unitarity of the shower below scale t)

POWHEG cross section is normalized to the NLO

Expand up to the first-emission level:

so double counting is avoided

Its structure is identical an ordinary shower, with normalization 
rescaled by a global K-factor and a different Sudakov for the first 
emission: no negative weights are involved. 
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MC@NLO/POWHEG

53
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The MC@NLO and POWHEG procedures can be cast in a single formula:

and we have split the Real emission matrix elements in a singular and finite part:

where

The difference between MC@NLO and POWHEG is in the way the real matrix 
elements are split:

Rs(Φ) = F R(Φ), Rf (Φ) = (1− F )R(Φ)

MC@NLO

POWHEG

Need exact mapping (ΦR,ΦB)⇒Φ
in MC subtraction term Rs

Default is F = 1 : exponentiate the 
full real; it can be damped by hand

Rs(Φ) = P (ΦR|B)B(ΦB) = MC
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MC@NLO vs POWHEG

54

MC@NLO POWHEG

Parton showers are (usually) not exact in the soft 
limit: MC@NLO needs an artificial smoothing ☹ ☺
MC@NLO does not exponentiate the non-singular 
part of the real emission amplitudes ☺ ☹
MC@NLO does not require any tricks for treating 
Born zeros ☺ ☹
POWHEG is independent from the parton shower 
(although, in general the shower should be a truncated vetoed) ☹ ☺
POWHEG is (almost) no negative weighted events ☹ ☺
Automation of the methods:
http://amcatnlo.cern.ch http://powhegbox.mib.infn.it/
http://www.sherpa-mc.de

☺ ☺
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Results: Higgs 
production

Higgs transverse momentum. MC@NLO (with pythia) is in agreement 
with HqT (which is NNLO+NNLL) within uncertainty

Pythia agrees with MC@NLO at low pT (in shape, not in normalization), 
but does not describe the hard tail at all (without CKKW/MLM merging!)
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Figure 7: Uncertainty bands for the transverse momentum spectrum of the Higgs bo-
son at LHC, 7 TeV, for a higgs mass mH = 120 GeV. On the upper plots, the
MC@NLO+PYTHIA result obtained using the non-default value of the reference scale
equal to MH. The bare PYTHIA result rescaled by a K-factor is also shown.

Figure 8: Comparison of MC@NLO and ALPGEN in top production, for a 14 TeV LHC,
from ref. [64]. On the left, the transverse momentum of the top quark. On the right, the
jet multiplicity.

NLO+PS and ME+PS methods, in such a way that higher jet multiplicities are described at
tree-level accuracy while inclusive observables maintain NLO accuracy. A further goal is the
full extension of the ME+PS method to NLO, and several proposals in this direction have
appeared in the literature [72, 73, 74, 75, 76]. Fixed-order NNLO calculations have become
available for some collider processes, and their implementation in a shower framework would
be welcome. Finally, a full extension of the shower algorithm to NLO, i.e. including NLO
splitting kernels is being pursued [77, 78].

Besides pursuing new approaches, one can also investigate to what extent some of these
objectives can be approached by simply merging event samples obtained with available tools.
In ref. [79], a recipe for merging a POWHEG together with a MadGraph ME+PS sample
is given for the cases of W and tt̄ production, and in ref. [80] a practical recipe is presented
for merging the Z and Z + 1-jet POWHEG samples.
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Four-lepton production

4-lepton invariant mass is almost insensitive to parton shower effects. 
4-lepton transverse moment is extremely sensitive

Including scale uncertainties
56

Figure 1: Four-lepton invariant mass (left panel) and transverse momentum (right panel), as pre-
dicted by aMC@NLO(solid black), aMC@LO(solid blue), and at the (parton-level) NLO (dashed
red) and LO (dashed magenta). The middle insets show the aMC@NLO scale (dashed red) and
PDF (black solid) fractional uncertainties, and the lower insets the ratio of the two leptonic channels,
eq. (3.5). See the text for details.

These have very different behaviours w.r.t. the extra radiation provided by the parton

shower, with the former being (almost) completely insensitive to it, and the latter (almost)

maximally sensitive to it. In fact, the predictions for the invariant mass are basically

independent of the shower, with NLO (LO) being equal to aMC@NLO (aMC@LO) over

the whole range considered. The NLO corrections amount largely to an overall rescaling,

with a very minimal tendency to harden the spectrum. The four-lepton pT , on the other

hand, is a well known example of an observable whose distribution at the parton-level LO

is a delta function (in this case, at pT = 0). Radiation, be it through either showering or

hard emission provided by real matrix elements in the NLO computation, fills the phase

space with radically different characteristics, aMC@LO being meaningful at small pT and

NLO parton level at large pT – aMC@NLO correctly interpolates between the two. The

different behaviours under extra radiation of the two observables shown in fig. 1 is reflected

in the scale uncertainty: while in the case of the invariant mass the band becomes very

marginally wider towards large M(e+e−µ+µ−) values, the corresponding effect is dramatic

in the case of the transverse momentum. This is easy to understand from the purely

perturbative point of view, and is due to the fact that, in spite of being O(αS) for any

pT > 0, the transverse momentum in this range is effectively an LO observable (the NLO

effects being confined to pT = 0). The matching with shower blurs this picture, and in

particular it gives rise to the counterintuitive result where the scale dependence increases,

rather than decreasing, when moving towards large pT [18]. Finally, the lower insets of

fig. 1 display the ratio defined in eq. (3.5) which, in agreement with the results of table 2,

is equal to one half in the whole kinematic ranges considered. The only exception is the

small invariant mass region, where off-resonance effects become relevant.

– 13 –
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Four-lepton production

Differences between Herwig (black) and Pythia (blue) showers large in 
the Sudakov suppressed region (much larger than the scale uncertainties)

Contributions from gg initial state (formally NNLO) are of 5-10%
57

Figure 4: Same observables as in fig. 1, for aMC@NLO+gg HERWIG (solid black) and Pythia

(dashed blue) results. The rescaled gg contributions withHERWIG (open black boxes) and Pythia

(open blue circles) are shown separately. Middle insets: scale (dashed red) and PDF (solid black)
fractional uncertainties. Lower insets: aMC@LO/(aMC@NLO+gg) with HERWIG (solid black)
and Pythia (dashed blue).

O(αS), the predictions are quite independent of whether a shower is generated or not.

Slight differences can be seen in the case of the ∆φ distribution, which is indeed known to

be more sensitive than pseudorapidity to extra radiation. The small-pT dominance ensures

that scale and PDF uncertainties are flat over the whole kinematic ranges, and of the order

of those relevant to total cross section.

We now discuss the impact of the O(α2
S) gg channel on our predictions. The argument

for considering such a channel, despite its being of the same perturbative order as all other

NNLO contributions which cannot be included, is the dominance of its parton luminosity

over those of the qq̄ and qg channels. This dominance grows stronger with decreasing

final-state invariant masses, and hence the O(α2
S) versus NLO comparison is significantly

influenced by the cut in eq. (3.3) – by lowering such a cut, the relative importance of the

gg contribution will grow bigger than the 5%-ish reported in table 2. We also discuss in the

following the differences that arise when matching our calculation to Pythia6 rather than

toHERWIG. We remind the reader that, depending on input parameters, Pythia is rather

effective in producing radiation in the whole kinematically-accessible phase space. This is

not particularly useful in the context of a matched computation, where hard radiation

is provided (in a way fully consistent with perturbation theory) by the underlying real-

emission matrix elements. Therefore, we have set the maximum virtuality in Pythia

equal to the four-lepton invariant mass. For consistency, this setting has been used also

when showering the gg-initiated contribution.

Figures 4, 5 and 6 present the same observables as figs. 1, 2 and 3 respectively. In

the main frame, we show the aMC@NLO predictions plus the gg contribution (including

shower), as resulting from HERWIG (solid black) and Pythia (dashed blue) – we shall

– 16 –
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Is NLO+PS always the 
preferred method?

It is the preferred method if the observable is described at NLO 
accuracy

But there are many observables for which a given NLO+PS code 
has only zeroth order accuracy.
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Figure 7: Uncertainty bands for the transverse momentum spectrum of the Higgs bo-
son at LHC, 7 TeV, for a higgs mass mH = 120 GeV. On the upper plots, the
MC@NLO+PYTHIA result obtained using the non-default value of the reference scale
equal to MH. The bare PYTHIA result rescaled by a K-factor is also shown.

Figure 8: Comparison of MC@NLO and ALPGEN in top production, for a 14 TeV LHC,
from ref. [64]. On the left, the transverse momentum of the top quark. On the right, the
jet multiplicity.

NLO+PS and ME+PS methods, in such a way that higher jet multiplicities are described at
tree-level accuracy while inclusive observables maintain NLO accuracy. A further goal is the
full extension of the ME+PS method to NLO, and several proposals in this direction have
appeared in the literature [72, 73, 74, 75, 76]. Fixed-order NNLO calculations have become
available for some collider processes, and their implementation in a shower framework would
be welcome. Finally, a full extension of the shower algorithm to NLO, i.e. including NLO
splitting kernels is being pursued [77, 78].

Besides pursuing new approaches, one can also investigate to what extent some of these
objectives can be approached by simply merging event samples obtained with available tools.
In ref. [79], a recipe for merging a POWHEG together with a MadGraph ME+PS sample
is given for the cases of W and tt̄ production, and in ref. [80] a practical recipe is presented
for merging the Z and Z + 1-jet POWHEG samples.
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(MLM matching)

Wednesday 10 October 2012



Rikkert Frederix, University of Zurich

Summary

We want to match NLO computations to parton showers to keep the 
good features of both approximations

In the MC@NLO method:
by including the shower subtraction terms in our process we avoid 
double counting between NLO processes and parton showers

In the POWHEG method:
apply an overall K-factor, and modify the (Sudakov of the) first 
emission to fill the hard region of phase-space according to the 
real-emission matrix elements

First studies to combine NLO+PS matching with ME+PS merging 
have been made and result look very promising...
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ME+PS merging at NLO

Hardest and 2nd hardest jets in Higgs production by gluon fusion
Merged sample agrees with NLO in the regions of phase-space where it 
should; smooth in between; and nearly no dependence on the matching scale
Not yet automated... work in progress
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Figure 6: As in fig. 3, with N = 2.

to disappear, and the merging-parameter dependence reduced, when pcut
T

becomes large.

We finally turn to discussing the case of the N = 2, sharp-D function, Sudakov-

reweighted merging; that is, we increase the largest multiplicity by one unit w.r.t. what

was done before. The settings are the same as in the N = 1 case, and figs. 6, 7, and 8 are

the analogues of figs. 3, 4, and 5 respectively (with the exception of one panel in fig. 8).

The numerators of the ratios that appear in the upper insets are the same as before for

the H + 0j and H + 1j cases; that for H + 2j is obviously specific to N = 2. In the lower

insets, together with the ratios that allow one to assess the merging systematics, we have

plotted (as histograms overlaid with open circles) the ratios of the N = 1 results over the

N = 2 ones, both for µQ = 50 GeV. We have also recomputed the Alpgen predictions, by

adding the H + 3 parton sample, for consistency with N = 2. The corresponding results

will not be shown in the plots, since these are already quite busy, and there is no difference

– 26 –

Figure 7: As in fig. 4, with N = 2.

at all in the patterns discussed above, except in a very few cases which we shall comment

upon when appropriate.

The common feature of all but one of the observables presented in figs. 6–8 is that

they are extremely close, in both shape and normalization, to their N = 1 counterparts

of figs. 3–5. This is highly non-trivial, since the individual i-parton contributions are

different in the two cases. The exception is the pseudorapidity of the second-hardest jet

(upper right panel of fig. 7), which the inclusion of the 2-parton sample turns into a more

central distribution, as anticipated in the discussion relevant to fig. 4, and brings it very

close to the Alpgen result obtained with the same µQ.

The small impact of the increase of the largest multiplicity is also generally in agree-

ment with what is found in Alpgen, where the inclusion of the H +3 parton contribution

changes the fully-inclusive rate by +0.3%. The effects on differential observables are also

– 27 –
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