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NLO Basics
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Fixed-order NLO contributions have two parts
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one-loop integral

• Consider this m-point 
loop diagram with n 
external momenta

• The integral to compute is

3

k1 k2

k3

k4

k5

k6

kn

D0 D1

D2

D3

Dm−1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3

�
ddl

N(l)
D0D1D2 · · · Dm−1

Di = (l + pi)2 −m2
i

Wednesday 10 October 2012



Valentin Hirschi, EPFL MG/FR School , Natal (Brazil) 03.10.2012

Standard Approach

• Passarino-Veltman reduction:

• Reduce a general integral to “scalar integrals” by 
“completing the square”

• Let’s do an example:
Suppose we want to calculate this triangle integral

4

�
ddl

N(l)

D0D1D2 · · ·Dm−1
→

�

i

coeffi

�
ddl

1

D0D1 · · ·

p

q
p+ q

l

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =









. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .









, Ycollinear =









. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .









. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4 − 2ε.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ε

s12s23

×
{

2

ε2

(

(−s12)
−ε + (−s23−)−ε

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ε) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ε. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)
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• The only independent four vectors are pµ and qµ . Therefore, the integral 
must be proportional to those. We can set-up a system of linear equations 
and try to solve for C1 and C2

• We can solve for C1 and C2 by contracting with p and q

where                                                (For simplicity, the masses are neglected here)

• By expressing 2l.p and 2l.q as a sum of denominators we can express R1 
and R2 as a sum of simpler integrals, e.g. 
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∫
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∫

dnl

(2π)n
lµlν

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2 − l2 − p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ‖ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ‖ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1 − κδ.p
p2(1+κ2) κ + κδ.p

p2(1+κ2)

κ + κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28
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(
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R1 =

�
dnl

(2π)n
2l · p

l2(l + p)2(l + q)2
=

�
dnl

(2π)n
(l + p)2 − l2 − p2

l2(l + p)2(l + q)2

=

�
dnl

(2π)n
1

l2(l + q)2
−

�
dnl

(2π)n
1

(l + p)2(l + q)2
− p2

�
dnl

(2π)n
1

l2(l + p)2(l + q)2
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• And similarly for R2

• Now we can solve the equation

by inverting the “Gram” matrix G

and we have expressed our original integral

in terms of known, simpler integrals and we are done!

6

∫

dnl

(2π)n
lµlν

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
(

R1

R2

)

=

(

[2l · p]
[2l · q]

)

= G

(

C1

C2

)

≡
(

2p · p 2p · q
2p · q 2q · q

)(

C1

C2

)

(4.24)

where the notation is [2l · p] =
∫

dnl
(2π)n

2l·p
l2(l+p)2(l+q)2 by expressing 2l · p, (2l · q) as a sum of

denominators 2l · p = (l + p)2 − l2 − p2 we can express R1, R2 as a sum of scalar integrals
Solving we get

(

C1

C2

)

= G−1

(

R1

R2

)

(4.25)

G is the Gram matrix

G =

(

2p · p 2p · q
2p · q 2q · q

)

, ∆2(p, q) = |G| = 4(p2q2 − (p · q)2) (4.26)

G−1 =

(

2q · q −2p · q
−2p · q 2p · p

)

∆2(p, q)
(4.27)

Thus the solution is C = G−1R This solution appears to have a problem when p ‖ q
and the Gram determinant vanishes; the original tensor integral had no special problems
when p ‖ q.

G can be diagonalized by an orthogonal transformation G = ODOT , D = diag{λ+,λ−}
Defining modified form factors C ′ and inhomogeneous terms, R′ by the transformations
C ′ = OT C, R′ = OT R, we have the solution:-

(

C ′
1

C ′
2

)

=

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

(4.28)

In the singular region one of the eigenvalues, say λ− will vanish

4.2.1 Singular region

Now consider the approach to the singular region by setting qµ = κpµ + δµ and keeping
only the leading terms in δ. The eigenvalues are

λ+ = 2p2(1 + κ2), λ− =
2(δ2p2 − (δ · p)2)

p2(1 + κ2)
, |G| = 4(δ2p2 − (δ · p)2) (4.29)

λ− vanishes like O(δ2) The matrix of eigenvectors is

O ∼ 1√
1 + κ2

(

1 − κδ.p
p2(1+κ2) κ + κδ.p

p2(1+κ2)

κ + κδ.p
p2(1+κ2) −1 + κδ.p

p2(1+κ2)

)

(4.30)

28

∫

dnl

(2π)n
lµlν

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµpν qµqν (pµqν + qµpν) gµν
)









C11

C22

C12

C00









(4.23)

We can solve for C1, C2 by contracting with the external momenta, p, q.
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which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary.
From the Landau conditions it follows that a necessary condition for a soft or collinear

singularity is that for at least one value of the index i [8]

Yi+1 i+1 = Yi+1 i+2 = Yi+1 i = 0 , soft singularity , (4.18)

Yi i = Yi+1 i+1 = Yi i+1 = 0 , collinear singularity . (4.19)

The indices in eqs. (4.18, 4.19) should be interpreted mod N , where N is the number of
external legs. Thus the structure of the Cayley matrices for integrals having a soft or
collinear divergence is as follows

Ysoft =









. . . 0 . . . . . .
0 0 0 . . .
. . . 0 . . . . . .
. . . . . . . . . . . .









, Ycollinear =









. . . . . . . . . . . .

. . . 0 0 . . .

. . . 0 0 . . .

. . . . . . . . . . . .









. (4.20)

In order to have a divergence, we must have at least one internal mass equal to zero, i.e.
at least one vanishing diagonal element of Y .

4.1.4 Scalar Integrals

Here we give an example of the result a scalar integral regularized by dimensional regu-
larization, d = 4 − 2ε.

ID
4 (0, 0, 0, 0; s12 , s23; 0, 0, 0, 0) =

µ2ε

s12s23

×
{

2

ε2

(

(−s12)
−ε + (−s23−)−ε

)

− ln2
(−s12

−s23

)

− π2

}

+ O(ε) . (4.21)

This result is taken from [9]. A basis set of scalar one-loop integrals has been presented
in ref. [10]. In addition there is a numerical code, called QCDLoop that returns the
numerical value of any one-loop integral as a Laurent series in 1/ε. Thus the problem
of one-loop integrals can be cansidered as completely solved, at least as far as NLO
calculations are concerned.

4.2 Passarino-Veltman

Tensor loop integrals can be reduced to sums of scalar integrals using the Passarino-
Veltman decomposition. As an example consider the form factor decomposition of a
simple rank 1 triangle diagram.

∫

dnl

(2π)n
lµ

(l2 − m2
1)((l + p)2 − m2

2)((l + q)2 − m2
3)

=
(

pµ qµ
)

(

C1

C2

)

(4.22)

27

R2 =

�
dnl

(2π)n
2l · q

l2(l + p)2(l + q)2
=

�
dnl

(2π)n
(l + q)2 − l2 − q2

l2(l + p)2(l + q)2

=

�
dnl

(2π)n
1

l2(l + p)2
−

�
dnl

(2π)n
1

(l + p)2(l + q)2
− q2

�
dnl

(2π)n
1

l2(l + p)2(l + q)2
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Higher point 
integrals

• For loop integrals with many legs, 
the reduction to scalar integrals 
can still be performed

• Only up to 4-point scalar 
integrals are needed (in 4 
dimensions)!

• The proof is beyond the scope of 
these lectures (it is straight forward by 
using the Van Neerven-Vermaseren basis 
for the loop momentum); it is related 
to the fact that in 4 dimensions 
only four 4-vectors can be linearly 
independent

7

k1 k2

k3

k4

k5

k6

kn

D0 D1

D2

D3

Dm−1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3
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Basis of scalar 
integrals

• The a, b, c, d and R 
coefficients depend only 
on external parameters 
and momenta

8

M
1-loop =

�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

Tadpolei0 =
�

ddl
1

Di0

Bubblei0i1 =
�

ddl
1

Di0Di1

Trianglei0i1i2 =
�

ddl
1

Di0Di1Di2

Boxi0i1i2i3 =
�

ddl
1

Di0Di1Di2Di3

• All these scalar integrals are known and available in computer libraries 
(FF [v. Oldenborgh], QCDLoop [Ellis, Zanderighi], OneLOop [v. Hameren])

Di = (l + pi)
2 −m2

i
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Divergences

9

The coefficients d, c, b and a are finite and do not contain poles in 1/є

The 1/є dependence is in the scalar integrals (and the UV renormalization)

When we have solved this system (and included the UV renormalization) we have 
the full dependence on the soft/collinear divergences in terms of coefficients in 
front of the poles. These divergences should cancel against divergences in the real 
emission corrections (according to KLN theorem)

M
1-loop =

�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)

Tadpolei0 =
�

ddl
1

Di0

Bubblei0i1 =
�

ddl
1

Di0Di1

Trianglei0i1i2 =
�

ddl
1

Di0Di1Di2

Boxi0i1i2i3 =
�

ddl
1

Di0Di1Di2Di3

Di = (l + pi)
2 −m2

i

Virtual ∼ v0 +
v1
�

+
v2
�2
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About the R term
• In our example the decomposition to scalar integrals was “exact”, i.e. there 

were no left-over terms.

• This is true for most integrals. Only if the rank of the integral is

there are some extra contributions which are called “Rational terms” that 
are not proportional to a scalar integral

• They are of UV origin and come from the є (dimensional regulator) 
dependence of the integral times a scalar integral that is UV divergent

(The Bubble scalar integrals are the only UV divergent scalar integrals)

• When taking the limit є → 0, only the leading contribution remains, which 
are independent from the scalar integral itself

10

∫

dnl

(2π)n
lµ

l2(l + p)2(l + q)2
=

(

p′µ q′µ
)

(

C ′
1

C ′
2

)

=
(

p′µ q′µ
)

(

1/λ+ 0
0 1/λ−

)(

R′
1

R′
2

)

The momentum corresponding to the singular eigenvalue is

q′µ = −δµ +
δ · pκ(1 + κ)

p2(1 + κ2)
= O(δ) (4.31)

R′
2 ∼ κ[2l · p] − [2l · q] ∼ O(δ) (4.32)

As expected the result for the tensor integral is finite in the limit δ → 0, but the vanishing
of R′

2 is not manifest; it is realized as a property of a combination of scalar integrals. One
approach would be to work in the primed basis, which would thus differ for every phase
space point. (Numerical problems halved?)

4.3 Rational terms by PV reduction

The rational part is related to the ultraviolet behavior of the theory; the naive expectation
is that the better the UV behavior, the “smaller” the rational part. When the integral
is free from the rational part, it is said to be “cut-constructible”. A natural expectation
is that the rational part is absent in UV-finite integrals. As we explain below, this
expectation turns out to be wrong; the correct result is that a Feynman N -point integral
is cut constructible, provided that tensor rank, r, of the integral satisfies the following
condition [11]

r < max{(N − 1), 2} . (4.33)

The condition is illustrated in Fig. 4.3. If this condition is violated the integral will
contain rational parts. Explicitly, Eq. (4.33) implies that the UV finite rank-two four-
point function is cut-constructible, whereas the UV-finite rank-three four-point function
is not.

In this section we give an proof of the condition that an integral has to satisfy for being
cut-constructible, Eq. (4.33). This proof is based on the Passarino-Veltman reduction.
We will proceed case-by-case for the two-, three- and four-point integrals which occur in
a renormalizable theory. The extension to higher point integrals will be performed at the
end. We first note that the Passarino-Veltman decomposition described in Section ??

and ??, yields the coefficients of the scalar integrals D0, C0, B0, A0 for arbitrary values of
the number of dimensions. Since the rational terms are related to UV singularities they
will show up at the end of the reduction as terms of the form

Rational terms ∼ εB0(p,m1,m2) , (4.34)

because B0 is the only UV divergent scalar integral. Such terms can only arise if the
reduction involves the dimensional parameter D. This means that integrals of rank r less
than two will always be cut-constructible, since their reduction coefficients are always D
independent. Ultraviolet divergent integrals of rank two or greater (e.g. Diiii, Ciii, Cii, Bii)

29

r ≥ max{(N − 1), 2}
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Automation

• Advantage:

• The method above can be straight-forwardly generalized to 
any one-loop integral (appearing in a renormalizable theory)

• Disadvantage:

• For relatively simple processes, the number of terms already 
explodes (several 100 MB of code is no exception for the matrix elements of a 

2 → 3 process); simplifications require hard work and are 
difficult to do in a general way

• Does only work when the integrals are known analytically

11

Wednesday 10 October 2012



Valentin Hirschi, EPFL MG/FR School , Natal (Brazil) 03.10.2012 12

PV-Reduction chain

Table from K.Ellis & al. hep-ph/1105.4319
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The “NLO revolution”

13

Wine and Cheese at  FNAL May 6 2011  Fabio Maltoni

Slide from L. Dixon

Saturday 7 May 2011

Slide from Lance Dixon
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New loop techniques

• The “loop revolution”: new techniques for computing one-loop 
matrix elements are now established:

• Generalized unitarity (e.g. BlackHat, Rocket, ...)
[Bern, Dixon, Dunbar, Kosower, 1994...; Ellis Giele Kunst 2007 + Melnikov 2008;...]  

• Integrand reduction (e.g. CutTools, GoSam)
[Ossola, Papadopoulos, Pittau 2006; del Aguila, Pittau 2004; Mastrolia, Ossola, Reiter, 
Tramontano 2010;...]

• Tensor reduction (e.g. Golem)
[Passarino, Veltman 1979; Denner, Dittmaier 2005; Binoth Guillet, Heinrich, Pilon, 
Reiter 2008]

14
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Integrand reduction

• Any one-loop integral can be decomposed in scalar integrals

• The task is to find these coefficients efficiently (analytically 
or numerically)

• The integrand (or OPP [Ossola, Papadopoulos, Pittau 2006]) 
reduction method is a method that has been automated in the 
CutTools program to find these coefficients in an automated 
way

• The integrand reduction technique is what we have adopted 
to use in MadGraph to compute the loop diagrams

15
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At the integrand 
level

• The decomposition to scalar integrals
presented before works at the level of
the integrals

• If we would know a similar relation at
the integrand level, we would be able
to manipulate the integrands and
extract the coefficients without doing
the integrals

• This is exactly what the OPP reduction does

• The decomposition is the same, except that there might be 
contributions that integrate to zero

16

M
1-loop =

�

i0<i1<i2<i3

di0i1i2i3Boxi0i1i2i3

+
�

i0<i1<i2

ci0i1i2Trianglei0i1i2

+
�

i0<i1

bi0i1Bubblei0i1

+
�

i0

ai0Tadpolei0

+R +O(�)
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At the integrand level
• Consider, e.g., the Box coefficient:

• And similarly for the c, b, a and R terms

• The contributions that vanish when doing the integral are called 
“spurious terms”

17

di0i1i2i3Boxi0i1i2i3 = di0i1i2i3

�
ddl

1
Di0Di1Di2Di3

=
�

ddl
di0i1i2i3

Di0Di1Di2Di3

=
�

ddl
di0i1i2i3 + d̃i0i1i2i3(l)

Di0Di1Di2Di3

�
ddl

d̃i0i1i2i3(l)
Di0Di1Di2Di3

= 0where
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one-loop integral

• Consider this m-point 
loop diagram with n 
external momenta

• The integral to compute 
is

18

k1 k2

k3

k4

k5

k6

kn

D0 D1

D2

D3

Dm−1

l
l + k1 = l + p1

l + k1 + k2 + k3 = l + p2

l + k1 + . . . + k6 = l + p3

�
ddl

N(l)
D0D1D2 · · · Dm−1

Di = (l + pi)2 −m2
i
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OPP decomposition

• For the numerator of any integrand of a one-
loop computation we can therefore write

19

N(l) =
m−1�

i0<i1<i2<i3

�
di0i1i2i3 + d̃i0i1i2i3(l)

� m−1�

i �=i0,i1,i2,i3

Di

+
m−1�

i0<i1<i2

�
ci0i1i2 + c̃i0i1i2(l)

� m−1�

i �=i0,i1,i2

Di

+
m−1�

i0<i1

�
bi0i1 + b̃i0i1(l)

� m−1�

i �=i0,i1

Di

+
m−1�

i0

�
ai0 + ãi0(l)

� m−1�

i �=i0

Di

+P̃ (l)
m−1�

i

Di

�
ddl

N(l)
D0D1D2 · · · Dm−1

Di = (l + pi)2 −m2
i
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Numerical 
evaluation

• By choosing specific values for the loop momentum l, we end up 
with a system of linear equations

• In a renormalizable theory, the rank of the integrand is always 
smaller (or equal) to the number of particles in the loop (with 
a conveniently chosen gauge)

• We can straight-forwardly set the it up by sampling the 
numerator numerically for various values of the loop 
momentum l

• By choosing l smartly, the system greatly reduces

• In particular when we chose l to be a complex 4-vector

20
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Functional form of 
the spurious terms
• The functional form of the spurious terms is known (it 

depends on the rank of the integral and the number of 
propagators in the loop) [del Aguila, Pittau 2004]

• for example, a box coefficient from a rank 1 numerator is

(remember that pi is the sum of the momentum that has 
entered the loop so far, so we always have p0 = 0)

• The integral is zero

21

d̃i0i1i2i3(l) = d̃i0i1i2i3 �
µνρσ lµpν1p

ρ
2p

σ
3

�
ddl

d̃i0i1i2i3(l)

D0D1D2D3
= d̃i0i1i2i3

�
ddl

�µνρσ lµpν1p
ρ
2p

σ
3

D0D1D2D3
= 0
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How it works...

To solve the OPP reduction, choosing special 
values for the loop momenta helps a lot

For example, choosing l such that

sets all the terms in this equation to zero 
except the first line

There are two (complex) solutions to this 
equation due to the quadratic nature of the 
propagators

22

N(l) =
m−1�

i0<i1<i2<i3

�
di0i1i2i3 + d̃i0i1i2i3(l)

� m−1�

i �=i0,i1,i2,i3

Di

+
m−1�

i0<i1<i2

�
ci0i1i2 + c̃i0i1i2(l)

� m−1�

i �=i0,i1,i2

Di

+
m−1�

i0<i1

�
bi0i1 + b̃i0i1(l)

� m−1�

i �=i0,i1

Di

+
m−1�

i0

�
ai0 + ãi0(l)

� m−1�

i �=i0

Di

+P̃ (l)
m−1�

i

Di

D0(l
±) = D1(l

±) = D2(l
±) = D3(l

±) = 0
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How it works...

• Two values are enough given the functional form for the 
spurious term. We can immediately determine the Box 
coefficient

• By choosing other values for l, that set other combinations of 
4 “denominators” to zero, we can get all the Box coefficients

23

N(l±) = d0123 + d̃0123(l
±)

m−1�

i �=0,1,2,3

Di(l
±)

d0123 =
1

2

�
N(l+)

�m−1
i �=0,1,2,3 Di(l+)

+
N(l−)

�m−1
i �=0,1,2,3 Di(l−)

�
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How it works...

• Now that we have all the Box coefficients we can start choosing values 
for l that set 3 “denominators” to zero to get the Triangle coefficients. Of 
course, now both the first and the second lines contribute.

• We already have solved the coefficients of the first line in the previous 
iteration, so also here there is only a simple system of equations to solve

• Once we have all the Triangle coefficients, we can continue to determine 
the Bubble coefficients; and finally the Tadpole coefficients

24

N(l) =
m−1�

i0<i1<i2<i3

�
di0i1i2i3 + d̃i0i1i2i3(l)

� m−1�

i �=i0,i1,i2,i3

Di

+
m−1�

i0<i1<i2

�
ci0i1i2 + c̃i0i1i2(l)

� m−1�

i �=i0,i1,i2

Di

+
m−1�

i0<i1

�
bi0i1 + b̃i0i1(l)

� m−1�

i �=i0,i1

Di

+
m−1�

i0

�
ai0 + ãi0(l)

� m−1�

i �=i0

Di

+P̃ (l)
m−1�

i

Di
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How it works...

• For each phase-space point we have to solve the system of 
equations

• Due to the fact that the system reduces when picking special 
values for the loop momentum, the system greatly reduces

• We can decompose the system at the level of the squared matrix 
element, amplitude, diagram or anywhere in between. As long as 
we provide the corresponding numerator function. Since each 
reduction with CutTools is computationally heavy, we directly 
reduce the squared element with MadGraph.

• For a given phase-space point, we have to compute the numerator 
function several times (~50 or so for a box loop)

25
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A classical example
• Suppose we want to

compute this integral

• So we that the numerator is 

• We know that we need only Box, Triangle, Bubble (and Tadpole) 
contributions. Let’s find the first Box integral coefficient.

• Take the two solutions of

• And use the relation we found before and we directly have

26

�
ddl

1

D0D1D2D3D4D5D6

D0(l
±) = D1(l

±) = D2(l
±) = D3(l

±) = 0

N(l) = 1

d0123 =
1

2

�
1

D4(l+)D5(l+)D6(l+)
+

1

D4(l−)D5(l−)D6(l−)

�

. . .

Di = (l + pi)
2 −m2

i
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Complications in d 
dimensions

• In the previous consideration I was very sloppy in considering if 
we are working in 4 or d dimensions

• In general, external momenta and polarization vectors are in 4 
dimensions; only the loop momentum is in d dimensions

• To be more correct, we compute the integral

27

�
ddl

N(l, l̃)

D̄0D̄1D̄2 · · · D̄m−1

D̄i = (l̄ + pi)
2 −m2

i = (l + pi)
2 −m2

i + l̃2 = Di + l̃2

l̄ = l + l̃

4 dim epsilon dimd dim

l̄ · pi = l · pi l̄ · l̄ = l · l + l̃ · l̃l · l̃ = 0
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Implications

• The decomposition in 
terms of scalar integrals 
has to be done in d 
dimensions

• This is why the rational 
part R is needed

28

k n

k 1

k 1

k 2

k 3

D 2
k 2k 1 k 3

D 0  

k 4

k 5

k 6

k 6

D 3

D m!1

l l+

D1

+l+ +

l+...+

Figure 1: An n-point one-loop diagram with m propagators in the loop. The dark blob represents
a tree structure.

The values of the integers Mi depend on the particular diagram considered (e.g. in fig. 1

we have M1 = 1, M2 = 3, M3 = 6), but they must always fulfill the following conditions:

1 ≤ Mi < Mi+1 , Mm = n =⇒ p0 = 0 , (3.5)

where the last equality of eq. (3.5) follows from eq. (3.2). The inverses of the loop propa-

gators in d and four dimensions we denote by D̄ and D respectively. Hence:

D̄i = (!̄+ pi)
2 −m2

i = Di + !̃2 ≡ (!+ pi)
2 −m2

i + !̃2 , 0 ≤ i ≤ m− 1 , (3.6)

which follows from eq. (3.3), and from the fact that the (−2ε)-dimensional parts of the

external four-vectors are equal to zero, since the ’t Hooft-Veltman scheme is adopted. Note

that mi is the mass of the particle flowing in the ith propagator, and therefore in general

p2i %= m2
i . As is known [14], the one-loop integral C can be expressed as a cut-constructible

part, i.e. a linear combination of scalar boxes, triangles, bubbles, and tadpoles, plus a (non

cut-constructible) remainder term R, called rational part:

C =
m−1∑

0≤i0<i1<i2<i3

d(i0i1i2i3)

∫
dd!̄

1

D̄i0D̄i1D̄i2D̄i3

+
m−1∑

0≤i0<i1<i2

c(i0i1i2)

∫
dd!̄

1

D̄i0D̄i1D̄i2

+
m−1∑

0≤i0<i1

b(i0i1)

∫
dd!̄

1

D̄i0D̄i1

+
m−1∑

i0=0

a(i0)

∫
dd!̄

1

D̄i0

+ R . (3.7)

The essence of the OPP method is that of computing C by determining (in a numerical

manner) the set of coefficients and the rational part

d(i0i1i2i3), c(i0i1i2), b(i0i1), a(i0), R, (3.8)

– 10 –
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Rational terms

• The main difference is how we get the rational terms (we 
already saw them in the Passarino-Veltman reduction)

• In the OPP method, they are split into two contributions, 
generally called

• Both have their origin in the UV part of the model, but only 
R1 can be directly computed in the OPP reduction and is 
given by the CutTools program

29

R = R1 +R2
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R1

• The origin of R1 is coming is the denominators of the 
propagators in the loop

• Of course, the propagator structure is known, so these 
contributions can be included in the OPP reduction

• They give contributions proportional to

30

1

Di
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D̄i
=

1

D

�
1− l̃2

Di

�

�
dd l̄

l̃2

D̄iD̄j
= −

iπ2

2

�
m2

i +m2
j −

(pi − pj)2

3

�
+O(�)

�
dd l̄

l̃2

D̄iD̄jD̄k
= −

iπ2

2
+O(�)

�
dd l̄

l̃4

D̄iD̄jD̄kD̄l
= −

iπ2
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+O(�)
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R2

• The other origin of rational terms is the numerator itself. For integrals 
with rank > 2 we can have dependence in the numerator that is 
proportional to 

• Unfortunately, this dependence can be quite hidden; maybe it is only 
explicitly there after doing the Clifford algebra

• Because we want to solve the system without doing this algebra 
analytically (we want to solve it numerically) we cannot get these 
contributions directly within the OPP reduction

• Within a given model, there is only a finite number of sources that can 
give these contributions; They have all been identified within the SM, 
and can be computed with the “R2 counter terms”

31

l̄2
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R2 Feynman rules
• Given that the R2 contributions are of UV origin, only up to 4-point 

functions contribute to it (in a renormalizable theory)

• They can be computed using special Feynman rules, similarly to the 
UV counter term Feynman rules needed for the UV renormalization, 
e.g.

• Unfortunately these Feynman rules are model dependent.
⇒ Maybe we can use FeynRules+FeynArts to compute them for any 
model?

32

p

µ1,a1 µ2,a2
=

ig2Ncol

48π2
δa1a2

[ p2

2
gµ1µ2 + λHV

(

gµ1µ2p
2 − pµ1pµ2

)

+
Nf

Ncol
(p2 − 6m2

q) gµ1µ2

]

p2
p1

p3

µ2,a2

µ1,a1

µ3,a3

= −
g3Ncol

48π2

(

7

4
+ λHV + 2

Nf

Ncol

)

fa1a2a3 Vµ1µ2µ3(p1, p2, p3)

µ3,a3µ4,a4

µ2,a2µ1,a1

= −
ig4Ncol

96π2

∑

P (234)

{

[ δa1a2δa3a4 + δa1a3δa4a2 + δa1a4δa2a3

Ncol

+ 4Tr(ta1ta3ta2ta4 + ta1ta4ta2ta3) (3 + λHV )

−Tr({ta1ta2}{ta3ta4}) (5 + 2λHV )
]

gµ1µ2gµ3µ4

+12
Nf

Ncol
Tr(ta1ta2ta3ta4)

(

5

3
gµ1µ3gµ2µ4 − gµ1µ2gµ3µ4 − gµ2µ3gµ1µ4

)}

µ, a

k

l

=
ig3

16π2

N2
col − 1

2Ncol
taklγµ (1 + λHV )

p

l k
=

ig2

16π2

N2
col − 1

2Ncol
δkl(−/p + 2mq)λHV

Figure 2: Effective vertices contributing to R2 in pure QCD.
∑

P (234) stands for a summation over
the six permutations of the indices 2, 3 and 4, and {taitaj} ≡ taitaj + taj tai . λHV = 1 in the HV
scheme and λHV = 0 in the FDH scheme. Ncol is the number of colors and Nf is the number of
fermions running in the quark loop.
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[Draggiotis, Garzelli, Papadopoulos, Pittau]
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R2 Feynman rules

33

• Not always simple, we implemented them for SM, but in general for 

BSM, automation is needed.
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Summary: Beyond 
Passarino-Veltman

• In PV reduction, we need analytic expressions for all the integrals. Possible 
to automate, but in practice too many terms which are difficult to simplify

• In OPP reduction we reduce the system at the integrand level.

• We can solve the system numerically: we only need a numerical function 
of the (numerator of) integrand. We can set-up a system of linear 
equations by choosing specific values for the loop momentum l, 
depending on the kinematics of the event

• OPP reduction is implemented in CutTools (publicly available). Given 
the integrand, CutTools provides all the coefficients in front of the scalar 
integrals and the R1 term

• The OPP reduction leads to numerical unstabilities whose origins are 
not well under control. The reach of OPP in double precision is unclear.

• Analytic information is needed for the R2 term, but can be compute once 
and for all for a given model

34

☹

☺

☹

☺

☺

☺

☹☺
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The MadGraph 
Solution

• MadGraph good at giving numerical expressions for 
matrix elements. Exactly what is needed by CutTools to 
get the coefficients of the scalar integrals. 

       However, it is only tree-level...

• Need to upgrade MadGraph so to generate loop 
diagrams and numerical code for the integrand N(q):

                                  MadLoop

35

➥
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Nomenclature

37

MadGraph5 v2.0

aMC@NLO

MadLoop5

MadFKS5

MG5 v1.x
tree-level features

But this separation is now transparent to the users!
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A basic reminder
• First generates all tree-level Feynman Diagrams

• Compute the amplitude of each diagram using a 
chain of calls to HELAS subroutines

38

The evolutive way of computing tree-diagrams

• Finally square all the related amplitude with their 
right color factors to construct the full LO amplitude
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Generating loop diagrams
• Instead of using an external tool for loop diagram generation, we recycle 

MadGraph5 power for tree level diagram generation.

• A loop diagrams with the loop cut open has to extra external particles. 
Consider e+e- ➞ u u~ u u~ (loop particles are in green). MadGraph will 
generate 8 L-cut diagrams. Here are two of them:

39

• All diagrams with two extra 
particles are generated and the 
ones that are needed are 
filtered out

• Each diagram gets an unique 
tag: any mirror and/or cyclic 
permutations of tags of 
diagrams already in the set are 
taken out

• Additional filter to eliminate 
tadpoles and bubbles attached 
to external lines

≡

≡

Diag 1 = [u∗(6)g∗(5)u∗(A)]

Diag 3 = [u∗(A)u∗(6)g∗(5)]
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MadLoop 

40

• It is clear though that d d~ ➞ c c~ u u~ will not get you this loop :

• For this one you necessarily need to generate the born process with the 
additional two L-cut particles being gluons!

• Loops including a u-quark were already generated with d d~ ➞ c c~ u u~, so 
you can speed up the d d~ ➞ c c~ g g generation forbidding u in the loop!

d

d~

d

d~

c

c~

c

c~

g g
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MadLoop 

41

• It is not yet what we want, we are missing the l-cut propagator

d~

c~ d~ c~

d cg g

➱

d c

g1

g2

gµν

l2

• Also close the color trace → insert a         or       to the color chainδab δij

i

j

k

l

a

b

➱ T r
ijf

arsfsbtT t
kl δab
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MadLoop 

42

• Closing the lorentz trace :

i

j

k

l

➱

Gµ

Gν

δµν =
4�

i=0

δµi����
Gµ

δiν����
Gν

• Two other modifications : 

➥ Allow for the loop momentum to be complex

➥ Remove the denominator of the loop propagators

• Ok, now this gives you              , the integrand numerator to be fed to CT!  N (lµ)
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results
• Errors are the MC integration 

uncertainty only

• Cuts on jets, γ*/Z decay 
products and photons, but no 
cuts on b quarks (their mass 
regulates the IR singularities)

• Efficient handling of exceptional 
phase-space points: their 
uncertainty always at least two 
orders of magnitude smaller than 
the integration uncertainty

• Running time: two weeks on 
~150 node cluster leading to 
rather small integration 
uncertainties

• MadFKS+MadLoop results are 
fully differential in the final states 
(but only parton-level)

Process µ nlf Cross section (pb)

LO NLO

a.1 pp→ tt̄ mtop 5 123.76±0.05 162.08±0.12

a.2 pp→ tj mtop 5 34.78±0.03 41.03± 0.07

a.3 pp→ tjj mtop 5 11.851±0.006 13.71± 0.02

a.4 pp→ tb̄j mtop/4 4 25.62±0.01 30.96± 0.06

a.5 pp→ tb̄jj mtop/4 4 8.195±0.002 8.91± 0.01

b.1 pp→ (W+ →)e+νe mW 5 5072.5±2.9 6146.2±9.8

b.2 pp→ (W+ →)e+νe j mW 5 828.4±0.8 1065.3±1.8

b.3 pp→ (W+ →)e+νe jj mW 5 298.8±0.4 300.3± 0.6

b.4 pp→ (γ∗/Z →)e+e− mZ 5 1007.0±0.1 1170.0±2.4

b.5 pp→ (γ∗/Z →)e+e− j mZ 5 156.11±0.03 203.0± 0.2

b.6 pp→ (γ∗/Z →)e+e− jj mZ 5 54.24±0.02 56.69± 0.07

c.1 pp→ (W+ →)e+νebb̄ mW + 2mb 4 11.557±0.005 22.95± 0.07

c.2 pp→ (W+ →)e+νett̄ mW + 2mtop 5 0.009415±0.000003 0.01159±0.00001

c.3 pp→ (γ∗/Z →)e+e−bb̄ mZ + 2mb 4 9.459±0.004 15.31± 0.03

c.4 pp→ (γ∗/Z →)e+e−tt̄ mZ + 2mtop 5 0.0035131±0.0000004 0.004876±0.000002

c.5 pp→ γtt̄ 2mtop 5 0.2906±0.0001 0.4169±0.0003

d.1 pp→W+W− 2mW 4 29.976±0.004 43.92± 0.03

d.2 pp→W+W− j 2mW 4 11.613±0.002 15.174±0.008

d.3 pp→W+W+ jj 2mW 4 0.07048±0.00004 0.1377±0.0005

e.1 pp→HW+ mW +mH 5 0.3428±0.0003 0.4455±0.0003

e.2 pp→HW+ j mW +mH 5 0.1223±0.0001 0.1501±0.0002

e.3 pp→HZ mZ +mH 5 0.2781±0.0001 0.3659±0.0002

e.4 pp→HZ j mZ +mH 5 0.0988±0.0001 0.1237±0.0001

e.5 pp→Htt̄ mtop +mH 5 0.08896±0.00001 0.09869±0.00003

e.6 pp→Hbb̄ mb +mH 4 0.16510±0.00009 0.2099±0.0006

e.7 pp→Hjj mH 5 1.104±0.002 1.036± 0.002

Table 2: Results for total rates, possibly within cuts, at the 7 TeV LHC, obtained with MadFKS

and MadLoop. The errors are due to the statistical uncertainty of Monte Carlo integration. See
the text for details.

• In the case of process c.5, the photon has been isolated with the prescription of

ref. [13], with parameters

δ0 = 0.4 , n = 1 , εγ = 1 , (2.3)

and parton-parton or parton-photon distances defined in the 〈η,ϕ〉 plane. The photon
is also required to be hard and central:

p(γ)T ≥ 20 GeV ,
∣∣∣η(γ)

∣∣∣ ≤ 2.5 . (2.4)

– 7 –
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Open-loops
[S. Pozzorini & al. hep-ph/1111.5206]

• Lite-Motive: Be Numerical where you can and analytical where you should.

N (lµ) =
rmax�

r=0

C(r)
µ0µ1···µr l

µ0 lµ1 · · · lµr
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Open-loops
[S. Pozzorini & al. hep-ph/1111.5206]

• Lite-Motive: Be Numerical where you can and analytical where you should.

N (lµ) =
rmax�

r=0

C(r)
µ0µ1···µr l

µ0 lµ1 · · · lµr

• How to get these coefficients? (Wavefunction and 4-momenta indices now omitted)

...
W 0

1

W 1
2

W 1
3

W 2
4

W 3
5V 1

1

V 0
2

V 1
3

V 0
4
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Open-loops
[S. Pozzorini & al. hep-ph/1111.5206]
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N (lµ) =
rmax�

r=0

C(r)
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iW (r)

j =
r�
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j l

i
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Open-loops
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Open-loops
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Optimizations
• Summing over helicities first, then reducing the matrix element squared.

• Efficient reconstruction of the missing L-cut propagator.

➡

Overall speedup of a factor 10+ w.r.t ML4 

M =
�

l=loop

2�(
�

h=hel

CT[

�
dDqNl,h

D0D1 · · ·Dn−1
]

� �� �
Al

A∗
h]) M =

�

l=loop

2�(CT[
�

dDq

�
h=hel

�
b=born Nl,hA∗

b,h

D0D1 · · ·Dn−1
])

    Also grouping together diagrams with the same denominator structures.
➥ Result: Number of OPP calls decreases from Nloops x Nhels to Nloop_topology !

• Exploit the open-loops[F.Cascioli,P.Maierhöfer,S.Pozzorini] technology.
➥ Faster numerator evaluations.
➥ Optimal recycling of the loop wavefunctions.
➥ Remains flexible as ALOHA outputs the building blocks [Work by O.Mattelaer].

• Automatically numerically detect zero and CP-dependent helicity configurations.
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Further Optimizations
• Recycling wavefunction accross helicity configurations

Ex. The same JIO[e+,e-‐] can be used

for the two helicity configs of  q	  q~ 

Thanks to open-loops, the loop
wavefunctions can also be recycled.
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Further Optimizations

=

�
dDq

NA(q) +NB(q)D123

D̄1D̄12D̄123D̄1234

• Grouping diagrams with similar denominator structures

A given triangle and its corresponding 
box can be reduced at once!

�
dDq

NA(q)

D̄1D̄12D̄123D̄1234
+

�
dDq

NB(q)

D̄1D̄12D̄1234

Ex: g g > g g would require only six 

calls to OPP, one per box topology!

But tedious book-keeping and also needs care with dimensionality.

Only useful if dominated by OPP!

• Recycling wavefunction accross helicity configurations

Ex. The same JIO[e+,e-‐] can be used

for the two helicity configs of  q	  q~ 

Thanks to open-loops, the loop
wavefunctions can also be recycled.
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Further Optimizations

• Linking MadLoop5 vs Tensor Integral Reduction (TIR).
because TIR can reduce

N (l) = lµ1 · · · lµr

=

�
dDq

NA(q) +NB(q)D123

D̄1D̄12D̄123D̄1234
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�
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dDq
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But tedious book-keeping and also needs care with dimensionality.

Only useful if dominated by OPP!

• Recycling wavefunction accross helicity configurations

Ex. The same JIO[e+,e-‐] can be used

for the two helicity configs of  q	  q~ 

Thanks to open-loops, the loop
wavefunctions can also be recycled.
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MadLoop5 in MG5 v2.0
friend of users

Process generation

With options specified:

[	  0.01s	  ]	  import	  model	  loop_sm-‐no_hwidth
[	  0.01s	  ]	  set	  complex_mass_scheme
[	  5min	  	  ]	  generate	  g	  g	  >	  e+	  ve	  mu-‐	  vm~	  b	  b~	  /	  h	  QED=2	  [virt=QCD]	  QCD=6	  WEIGHTED=14
[	  2min	  	  ]	  output	  standalone	  MyProc
[	  1.4s*]	  launch	  -‐f

 generate	  <process>	  <amp_orders_and_option>	  [<mode>=<pert_orders>]	  <squared_orders>	  

 import	  model	  <model_name>-‐<restrictions>

 output	  <format>	  <folder_name>
 launch	  <options>

Examples, starting from a blank MG5 interface.

Very simple one:

[	  2.5s	  	  	  ]	  generate	  g	  g	  >	  t	  t~	  [virt=QCD]
[	  6.1s	  	  	  ]	  output
[	  4.2	  ms*]	  launch

*	  time	  per	  phase-‐space	  point,	  summed	  over	  helicities	  and	  colors.
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Handling BSM Models
UFO MODELS @ NLO

Additional features in UFO@NLO:

CouplingOrder

expansion_order
perturbative_expansion
hierarchy

CTVertices
V GGZA = CTVertex(name = ‘V GGZA‘,

particles = [P.G, P.G, P.Z, P.A],

color = [‘Tr(1, 2)‘],

lorentz = [L.R2 GGVV],

loop particles = [[[P.u], [P.c], [P.t]], [[P.d], [P.s], [P.b]]],

couplings = {(0, 0, 0) : C.R2 GGZAup, (0, 0, 1) : C.R2 GGZAdown},
type = ‘R2‘)

CTParameters

MyCTParam = CTParameter(name = ‘MyCTParam‘,

type = ‘real‘,

value = {−1 : ‘A‘, 0 : ‘B‘}
texname = ‘MadRules‘)

counterterm 
attribute to Parameters and Particles

Param.GS.counterterm = {(1, 0, 0) : CTParam.G UVq.value,

(1, 0, 1) : CTParam.G UVb.value,

(1, 0, 2) : CTParam.G UVt.value,

(1, 0, 3) : CTParam.G UVg.value}
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Speed of one-loop amplitudes
Color summed, with OPP

49

Process tpol [ms] nhel tunpol [ms]

u	  u~	  →	  t	  t~ 0,52 3/16 0,72
u	  u~	  →	  w+	  w-‐ 0,43 10/36 1,00
u	  d~	  →	  w+	  g 0,87 6/24 1,51
g	  g	  →	  t	  t~ 2,51 6/16 5,42

u	  u~	  →	  t	  t~	  g 7,44 16/32 27,5
u	  u~	  →	  w+	  w-‐	  g 9,3 36/72 81,8
u	  d~	  →	  w+	  g	  g 13,5 12/48 36,9
g	  g	  →	  t	  t~	  g 40,8 32/32 381

u	  u~	  →	  t	  t~	  g	  g 142 32/64 1010
u	  u~	  →	  w+	  w-‐	  g	  g 166 72/144 2820
u	  d~	  →	  w+	  g	  g	  g 260 24/96 1’310
g	  g	  →	  t	  t~	  g	  g 826 64/64 16’900

u	  d~	  →	  w+	  g	  g	  g	  g 9400 48/192 90’900

Polarized timing competitive

Good enough for 2 → 3
Unpolarized timing

Might need further 
improvement for 2 → 4

 2 → 5  generation feasible

But evaluation is slow, so only 
 useful to cross-check other codes

(Ex. gg→gggg successfully cross-checked 
vs NGluon[S. Badger])

Higher multiplicity

 t2→2 : t2→3 : t2→4     1 : 40 : 800 ms≲
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Linear scaling with # loop diags

50

Higher rank loops appearing at larger multiplicities are no obstacle!
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Numerical stability with OPP

51

2 > 4, problems ahead...

Uniformly distributed points with       = 1TeV, pt > 50 GeV and ∆Rij>0.5
√
s
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Numerical stability with OPP

52

Double precision is not always enough!

Stability probed by two methods:

• Loop reading direction : D0D1...Dn-1Dn → DnDn-1...D1D0

   ➥ Advantage: The coefficients of N(q) need not be recomputed.

• Two PS point rotations :  (E,x,y,z) → (E,z,-x,-y) and (E,x,y,z) → (E,-z,y,x)

Fraction of points with less than 3 digits accuracy:

2 → 2   << 10-3 %
2 → 3   ~ 0.01 %
2 → 4   ~ 7 % (!)

Further investigation necessary for 2 → 4.  (TIR might solve...)
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Summary

• One-loop integrals can be written as coefficients a, b, c and d times scalar 
functions and a rational part R

• The traditional approach for computing one-loop diagrams (Passarino-
Veltman reduction) needs analytical knowledge of the loop and leads to 
very large expressions for loops of higher ranks. Not for automation...

• The OPP reduction works at the integrand level: choosing specific values 
of the loop momentum results in a linear system of equations, which can be 
solved numerically and efficiently

• MadLoop efficiently generates loop diagrams by cutting them open, which 
results in tree-level diagrams with two extra external particles

• MadGraph5 reach for NLO QCD computation is:   2 ➛ 3, 2 ➛ 4 
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Thanks
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Small live Demo
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Additional Slides
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thought-to-be Final Word
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Be ready to try the MadGraph v2.0 by yourself

MadLoop5 in MadGraph5 v2.0, a new 1-loop generator

• Numerical, diagrammatic, some recursive features

• Open-loops method exploited, i.e. loop-momentum polynomials

• PUBLIC release very soon (keep an eye on launchpad.net/madgraph5)

User-friendly, Automated, Flexible, Unique framework

• BSM model covered thanks to UFO and ALOHA flexibility.

• User-friendly thanks to MG5 interfaces.

• Fully automated, from the hard process output to event generation.

Fast, Stable
• Fast enough to cover today’s processes of interest, 2 → 4 takes O(5-50)s

• Stable thanks to quadruple precision when needed.
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aMC@NLO
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full automation...

... in MadGraph5 v2.0!
CutTools

any OLP
or

 Pythia   

 Herwig 

FeynRules

LesH
ouch

es

inter
fac

e

UFO format

or
Process

independent

Ready for

Experimentalists !
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Numerical stability with OPP
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Quadruple precision solves

➞ Quadruple precision cures the Unstable PS (UPS) points but...

• ... is 100 times slower! (This is for complete qd, but double-double would be only 8 times slower)

➥  So 1% of UPS is already enough to double the integration time.

• ... a very (very) small fraction of the points will remain unstable.
     ➥ What to do with these Exceptional PS points (EPS)?

➞ In general, accuracy is worse than with Tensor Integral Reduction

➞ Need to assess that the stability tests used are accurate.

➞ Also need to investigate possible correlation between small weight 
of the ME and the unstability of its evaluation.
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MadLoop V4 to V5
Great improvements

Task MadLoop V4 MadLoop V5
Generation of L-Cut diagrams, loop-basis selection ✓- ✓++

Color Factor computation ✓- ✓
Counter-term (UV/R2) diagrams generation ✓- ✓
Mixed order perturbation (generation level) ✕ ✓

File output and run-time speed ✓-- ✓++
Drawing of Loop diagrams ✕ ✓

4-gluon R2 computation ✕ ✓
Automated parallel tests ✕ ✓

Automatic output sanity checks (Ward, ε-2) ✓ ✓
EPS handling ✓-- (no qp) ✓- (qp)

Virtual squared ✓- ✓
Decay Chains ✕ ✕

Automatic loop-model creation ✕ ✕

Complex mass scheme and massive bosons in the loop ✕ ✓/✕

✓ = non-optimal | ✓ = done optimally | ✕ = not done | ✕ = not done YET   
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Process Details

Process unpol tcoef / ttot pol tcoef / ttot nloops / nloop_groups

u	  u~	  →	  t	  t~ 42% 20% 8 / 14
u	  u~	  →	  w+	  w-‐ 69% 21% 5 / 6
u	  d~	  →	  w+	  g 52% 16% 9 / 11
g	  g	  →	  t	  t~ 66% 25% 26 / 45

u	  u~	  →	  t	  t~	  g 78% 18% 54 / 128
u	  u~	  →	  w+	  w-‐	  g 91% 24% 40 / 98
u	  d~	  →	  w+	  g	  g 69% 17% 61 / 144
g	  g	  →	  t	  t~	  g 92% 29% 164 / 556

u	  u~	  →	  t	  t~	  g	  g 88% 22% 374 / 1530
u	  u~	  →	  w+	  w-‐	  g	  g 95% 25% 260 / 1108
u	  d~	  →	  w+	  g	  g	  g 84% 20% 405 / 1827
g	  g	  →	  t	  t~	  g	  g 97% 35% 1168 / 7356

u	  d~	  →	  w+	  g	  g	  g	  g 94% 21% 3255 / 25666
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Default vs Open-loop timings
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