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Why Parton Shower Monte Carlos

I Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number
of partons, way less than those taking part to a real collision.

Fabio MaltoniThikTank on Physics@LHC, 05-09 Dec 2011 5
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Why Parton Shower Monte Carlos

I Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number
of partons, way less than those taking part to a real collision.

I Only observables sufficiently inclusive wrt radiation are well predicted by fixed-order
PT; for a more exclusive description, it often fails.

I Examples: total cross sections: OK.
W pT in pp →W @NLO: NOT OK for small pT .

I Can we just live with inclusive quantities? No. A lot of information in exclusive
observables.

1st motivation: describe realistically exclusive final states.

I Fixed-order PT gives a description in terms of patrons, not of physical hadrons.

I It does not describe underlying-event, pile-up, ...

2nd motivation: fill the gap between fixed-order PT and reality.

Parton showers offer a versatile tool to realise this.
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Example of breakdown of fixed-order PT

W pT in pp →W @NLO

Rikkert Frederix, University of Zurich

NLO...?
Are all (IR-safe) observables that we can compute using a NLO  
calculation correctly described at NLO?

It depends on the observable...

In the small transverse momentum region, this calculation breaks 
down (it’s even negative in the first bin!), and anywhere else it is 
purely a LO calculation for V+1j

20

LO

NLO

transverse momentum [GeV]

Tuesday, December 6, 2011

I LO predicts just one bin.

I NLO has an unphysical
discontinuity at pT = 0.

I Small pT of the extra
radiation is the tricky
region.

I Inclusive observables are
OK just because they
effectively ”integrate”
over it (cross section,
rapidity, ...).

I This region is where to
start formulating a
complement to
fixed-order PT.
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Parton branching

a
c

b

a
c

bMn+1 Mn

 Cross section factorization in the collinear limit

|Mn+1|2dΦn+1 � |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

•        virtuality of particle    (could be its     or       ...)
   it represents the hardness of the branching
•        energy fraction of parton   relative to 
•                  Altarelli - Parisi splitting kernel

p⊥a Eaθ

z =

t =

b a

Pa→bc(z) =

θ

θ −→ 0

PSMC I: collinear factorization

a = final state massless QCD parton coming out of a generic hard process, splitting into
b and c massless at small angle θ.

I As θ → 0, a goes on shell: its branching is related to time scales very long wrt those
of the hard interaction (Mn).

I Including such a branching can not completely change the desription set up by Mn.

I The whole process cross section should be writeable in this limit as the basic one
times some branching probability.
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Parton branching
Case a = q , b = q with relative energy z , c = g with relative energy 1− z .

Polarizations for small θ:

u+
a =
√
Ea(1, 0, 1, 0), u−a =

√
Ea(0, 1, 0,−1),

u+
b =
√
zEa(1, θ(1− z)/2, 1, θ(1− z)/2),

u−b =
√
zEa(−θ(1− z)/2, 1, θ(1− z)/2,−1),

εinc = (0, 1, 0, θz), εoutc = (0, 0, 1, 0).

Amplitudes in the t → 0 limit (t = p2
a = 2EbEc(1− cos θ) ∼ z(1− z)E 2

a θ
2):

Mn+1(±,±, in) ∼Mn
gSt

c

t
ū±b γ

µu±a ε
in
c ∼ −iMn

gSt
c

√
t

1− z√
1− z

,

Mn+1(±,±, out) =Mn
gSt

c

t
ū±b γ

µu±a ε
out
c =Mn

gSt
c

√
t

1 + z√
1− z

.

Phase space: dΦn+1 = dΦn
dz dt dφ
4(2π)3

.

Unpolarized cross section (up to terms regular as t → 0):

dσn+1 ∼ dσn
dt

t
dz
αS

2π
CF

1 + z2

1− z
.
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Collinear factorization

a
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   it represents the hardness of the branching
•        energy fraction of parton   relative to 
•                  Altarelli - Parisi splitting kernel
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PSMC I: collinear factorization

Analogously happens for g → gg and g → qq̄: cross section factorization in the collinear
limit:

dσn+1 ∼ dσn
dt

t
dz
αS

2π
Pa→bc(z).

Universal: Pa→bc(z) just depends on parton identities and energy fraction, not on Mn.
It is a sort of ”branching probability”.

Pa→bc(z) = Altarelli-Parisi splitting kernel (CA = 3, CF = 4/3, TR = 1/2):

Pg→qq(z) = TR

[
z2 + (1− z)2

]
, Pq→qg (z) = CF

[
1 + z2

1− z

]
,

Pg→gg (z) = CA

[
z(1− z) +

z

1− z
+

1− z

z

]
.

Comments. 1) Soft singularity as emitted gluon goes soft.
2) Gluons radiate the most.
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PSMC I: collinear factorization

Cross section factorization in the collinear limit:

dσn+1 ∼ dσn
dt

t
dz
αS

2π
Pa→bc(z).

I t is the ”evolution variable” (more on this later): it could be virtuality of a, but also
its p2

⊥, or E 2
a θ

2, ... (indeed in the collinear limit p2
a ∝ p2

⊥ ∝ E 2
a θ

2)
It represents the branching scale and tends to 0 in the collinear limit.

I z = is the ”energy variable”: it could be the relative energy of b, but also
(pb + prec)2/(pa + prec)2, ...
It represents the momentum sharing between b and c and tends to 1 in as c goes
soft.
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Multiple emission PSMC II: multiple emission

a
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dθ
θ�
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c

bMn

θ, θ� −→ 0
θ� � θ

e
dMn+2

|Mn+2|2dΦn+2 � |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

dt�

t�
dz�

dφ�

2π

αS

2π
Pb→de(z

�)

Factorized rate for multiple emission

Parton Shower Monte Carlo knows about the Leading 
Logarithmic (LL) collinear approximation of the total rate

σn+j ∝
� Q2

Q2
0

dt

t

� t

Q2
0

dt�

t�
...

� t(j−2)

Q2
0

dt(j−1)

t(j−1)
∝ σn

�αS

2π

�j

logj(Q2/Q2
0)

Now consider Mn+1 as the new core process and use the same recipe to get the
dominant collinear contribution to the n + 2-body cross section: add a new branching at
angle θ′ � θ:

dσn+2 ∼ dσn+1
dt′

t′
dz ′

αS

2π
Pb→de(z ′)

∼ dσn
dt

t
dz
αS

2π
Pa→bc(z)

dt′

t′
dz ′

αS

2π
Pb→de(z ′).

I Can be iterated for an arbitrary number of emissions.

I The recipe to get the leading collinear singularity is an iterative sequence of
emissions with no memory of the past history of the system, so a Markov chain.

I Process independence (no reference to dσn).
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σn+j ∝
� Q2

Q2
0

dt

t

� t

Q2
0

dt�

t�
...

� t(j−2)

Q2
0

dt(j−1)

t(j−1)
∝ σn

�αS

2π

�j

logj(Q2/Q2
0)

I Dominant collinear contribution is from the region where subsequent emissions are
in strong ordering: θ � θ′ � θ′′....

I Rate for multiple strongly-ordered emissions

σn+k ∝ σn α
k
S

∫ Q2

Q2
0

dt

t

∫ t

Q2
0

dt′

t′
...

∫ t(k−2)

Q2
0

dt(k−1)

t(k−1)
∝ σn

(αS

2π

)k
logk(Q2/Q2

0 ),

Q = typical hard scale of Mn, Q0 = small IR cutoff, Q0 � Q, called resolution
scale. Typically Q0 ∼ 1GeV.

I Each non-ordered configuration misses at least one large log.

I Formalism based on strong ordering knows about the leading logarithmic collinear
approximation of the total rate.

I Now clear why fixed-order PT breaks down at small pT : effective coupling is
αS log(Q2/Q2

0 ), not just αS.
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I Dominant collinear contribution is from the region where subsequent emissions are
in strong ordering: θ � θ′ � θ′′....

I Rate for multiple strongly-ordered emissions

σn+k ∝ σn α
k
S

∫ Q2

Q2
0

dt

t

∫ t

Q2
0

dt′

t′
...

∫ t(k−2)

Q2
0

dt(k−1)

t(k−1)
∝ σn

(αS

2π

)k
logk(Q2/Q2

0 ),

Q = typical hard scale of Mn, Q0 = small IR cutoff, Q0 � Q, called resolution
scale. Typically Q0 ∼ 1GeV.

I Each non-ordered configuration misses at least one large log.

I Formalism based on strong ordering knows about the leading logarithmic collinear
approximation of the total rate.

I Now clear why fixed-order PT breaks down at small pT : effective coupling is
αS log(Q2/Q2

0 ), not just αS.
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Absence of interference

I The branching sequence from a leg, the parton shower, describes the history of that
leg starting from the hard subprocess (Q) all the way down to the non perturbative
region (Q0).

I To describe the histories of two such legs the two showers are uncorrelated. Even
within the same history, subsequent emissions are uncorrelated.

I Parton shower misses interference effects among various legs: extreme simplicity at
the price of quantum inaccuracy.

I Nevertheless, it captures the leading singularities, so it gives the amazing possibility
of describing an arbitrary number of emissions.
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Leading colour

I Interference effects are suppressed by powers of the Nc . Why? The overlap of
different colour states (interference) is smaller than the overlap of equal colour
states (amplitude squared).

I In the picture: interference (left) suppressed by N2
c wrt amplitude squared (right).

I Absence of interference in the emission chain implies that the colour flow in the
parton shower is correct only for Nc →∞.
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Emission probability and Sudakov form factor

dσn+1 ∼ dσn
dt

t
dz
αS

2π
Pa→bc(z).

I Differential probability for branching a→ bc between t and t + dt (knowing that no
emission occurred before):

dp(t) =
∑
bc

dt

t

∫
dz
αS

2π
Pa→bc(z).

I Starting from Q2, the probability that a does not split until t (≡ ∆(Q2, t)) is the
product of the probabilities that it did not split in any interval dtk between Q2 and t:

∆(Q2, t) =
∏
k

[
1−

∑
bc

dtk
tk

∫
dz
αS

2π
Pa→bc(z)

]
= exp

[
−
∫ Q2

t

dp(t′)

]
≤ 1.

I ∆(Q2, t) is the Sudakov form factor: it resums the leading logs!
I Properties

d∆(Q2, t)

dt
=

dp(t)

dt
∆(Q2, t),

∆(ta, tb) = ∆(ta, tc)∆(tc , tb) =
∆(ta, tc)

∆(tb, tc)
.
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Unitarity

I Define dPk as the probability for exactly k ordered splittings at given scales:

dP1(t1) = ∆(Q2, t1) dp(t1)∆(t1,Q
2
0 ),

dP2(t1, t2) = ∆(Q2, t1) dp(t1) ∆(t1, t2) dp(t2) ∆(t2,Q
2
0 )Θ(t1 − t2),

... = ...

dPk(t1, ..., tk) = ∆(Q2,Q2
0 )

k∏
j=1

dp(tj)Θ(tj−1 − tj).

I Integrated probability for k splittings (regardless of the scales):

Pk ≡
∫

dPk(t1, ..., tk) = ∆(Q2,Q2
0 )

1

k!

[∫ Q2

Q2
0

dp(t)

]k
, ∀k = 0, 1, ...

I Sum of probabilities:

∞∑
k=0

Pk = ∆(Q2,Q2
0 )
∞∑
k=0

1

k!

[∫ Q2

Q2
0

dp(t)

]k
= ∆(Q2,Q2

0 ) exp

[∫ Q2

Q2
0

dp(t)

]
= 1.
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Unitarity

Cross section for 0 or 1 emissions from leg a in the parton shower:

dσ≤1 = dσn

[
∆(Q2,Q2

0 ) + ∆(Q2,Q2
0 )
∑
bc

dt

t
dz
αS

2π
Pa→bc(z)

]
.

Expand at first order in αS:

dσ≤1 ∼ dσn

[
1−

∑
bc

∫ Q2

Q2
0

dt′

t′
dz
αS

2π
Pa→bc(z) +

∑
bc

dt

t
dz
αS

2π
Pa→bc(z)

]
.

I Same structure of the two latter terms, with opposite signs: cancellation of
divergences between the approximate virtual- and approximate real-emission cross
sections.

I The cancellation of infinities in the shower comes out as the basic statement that
P(emission) + P(no emission) = 1, without effort.

I Analogy: in e+e− → jets the jet separation plays the role of the resolution scale Q0.
Unitarity is implemented by σNLO = σ2 + σ3 = finite, and one can define probabilities
for jet multiplicity m as σm/σNLO.
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Cross section for 0 or 1 emissions from leg a in the parton shower:
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I Same structure of the two latter terms, with opposite signs: cancellation of
divergences between the approximate virtual- and approximate real-emission cross
sections.

I The cancellation of infinities in the shower comes out as the basic statement that
P(emission) + P(no emission) = 1, without effort.

I Analogy: in e+e− → jets the jet separation plays the role of the resolution scale Q0.
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Summary of lecture 1

I Differential branching probability in final-state radiation

dp(t) =
∑
bc

dt

t

∫
dz
αS

2π
Pa→bc(z).

I Probability of no emission in the shower between scales Q2 and t (Sudakov form
factor):

∆(Q2, t) = exp

[
−
∫ Q2

t

dt′

t′
dz
αS

2π
Pa→bc(z)

]
≤ 1.

I Unitarity: Sudakov is a sensible probability distribution, respecting
P(emission) + P(no emission) = 1.
The shower does not change normalizations, just affects how events are distributed.

I The shower misses interference effects.
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Implementation: Monte Carlo method

I Extract evolution variable t according to the
Sudakov.
Solve the equation ∆(Q2, t) = R#, with R# a
flat random number between 0 and 1.
This correctly reproduces the probability
distribution (probability of extracting a scale t
between t1 and t2 is ∆(Q2, t2)−∆(Q2, t1)).

1

t Q2Q2
0

∆a(Q2, t)

R#

Wednesday, November 30, 2011

I Extract energy faction z and identities b and c according to Pa→bc(z).
If only one possible branching, define

I (z) ≡
∫ z

dz ′
αS

2π
Pa→bc(z ′)

and solve I (z)/I (zmax) = R ′#.
For many possible branchings, pick one at random according to Ii (zmax)/

∑
j Ij(zmax)

and then extract z .

I Extract φ (flat).

I Reiterate, updating the maximum scale for the Sudakov, until all the ’external’
partons are at a scale smaller than a threshold Q2

0 ∼ 1 GeV.

I Put partons on shell and hadronize (see later).
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Including subleading logs: angular ordering

Soft gluon limit:

   2011 School of High-Energy Physics Fabio Maltoni

p̄, j

p, i

k, a
p̄, j

p, i

k, a

γ∗, Z

Angular ordering

You can easily prove that: 

Radiation happens only for angles smaller than 
the color connected (antenna) opening angle!

18

d�qqg = CF
↵S

2⇡
�Bornd cos ✓

dk0

k0

d�

2⇡

1 � cos ✓ij

(1 � cos ✓ik)(1 � cos ✓jk)
d cos ✓

1 � cos ✓ij

(1 � cos ✓ik)(1 � cos ✓jk)
=

1

2


cos ✓jk � cos ✓ij

(1 � cos ✓ik)(1 � cos ✓jk)
+

1

(1 � cos ✓jk)

�
+

1

2
[i ! j]

The probabilistic interpretation of Wi and Wj 
is achieved simply by azimuthal averaging:

Z
d�

2⇡
Wi =

1

1 � cos ✓ik
if ✓ik < ✓ij , 0 otherwise

And the same for Wj

dσn+1 = dσnCF
αS

2π

dz

z

dφ

2π
d cos θ

ζij
ζikζjk

,

with ζab ≡ 1− cos θab.

ζij
ζikζjk

=
1

2

[
ζij − ζjk
ζikζjk

+
1

ζjk

]
+(i → j) ≡Wi+Wj .

∫
dφ

2π
Wi =

Θ(θij − θik)

ζik
=⇒
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And the same for Wj

I Soft gluon limit: radiation inside cones allowed and described by the eikonal
approximation, outside the cones suppressed and = 0 after azimuth integration:
destructive interference effect.

I This can be reiterated to further gluon radiation: emission angle gets smaller and
smaller.
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Angular ordering in a parton shower

I Soft limit of the cross section after azimuth integration is

dσn+1 ∼ dσn
dζ

ζ

dz

z

αS

2π
CF ,

with ζ = 1− cos θ (note that ordering in θ = ordering in ζ).

I Emission non-zero only in a cone: interference effect.

I Previous formula still gives a Markov chain: convenient way of including a quantum
effect in a classical fashion ⇒ it is not exact that all interferences are neglected in a
parton shower.

I Improved by replacing CF
1
z
→ Pa→bc(z) to get the correct collinear non-soft limit.

I Some interference effects are included ⇒ subdominant contributions
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Initial-state radiation

Up to now we have dealt with final-state radiation: what about initial-state radiation?

I For final-state radiation one starts from the hard subprocess and evolves ”forward in
time”, towards the final-state particles.

I For initial-state radiation adopt instead backwards evolution: start from the hard
subprocess, and evolve back to the incoming colliding hadrons.

I Use DGLAP equation to determine the parton evolution backwards in time.
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DGLAP equation

I Establish the dependence of the parton distribution function fb(z , t) on the scale t.

I Change of fb between t and t + dt = probability to have a parent a at scale t and
energy fraction z ′ > z , times the probability for it to branch to b between t and
t + dt, summed over all possible starting values z ′

I In formulae:

dfb(z , t) =
dt

t

∑
ac

∫ 1

z

dz ′
∫ 1

0

dw
αS

2π
fa(z ′, t)Pa→bc(w)δ(z − wz ′)

=
dt

t

∑
ac

∫ 1

0

dw

w

αS

2π
fa
( z

w
, t
)
Pa→bc(w).
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Initial-state radiation
I Infintesimal change in fb(z , t):

dfb(z , t) =
dt

t

∑
ac

∫ 1

0

dw

w

αS

2π
fa
( z

w
, t
)
Pa→bc(w).

I Differential emission probability in backwards evolution = infinitesimal change
dfb(z , t) normalized to fb(z , t):

dp̂(z , t) =
dfb(z , t)

fb(z , t)
=
∑
ac

dt

t

∫
dw

w

αS

2π

fa(z/w , t)

fb(z , t)
Pa→bc(w),

as opposed to the final state radiation probability

dp(t) =
∑
bc

dt

t

∫
dz
αS

2π
Pa→bc(z).

I Thus, initial-state radiation, from the hard process backwards in time, can be
described in a way similar to final-state radiation, but with a different dp.

I Consequently the Sudakov form factor for initial-state radiation is

∆̂(z ,Q2, t) = exp

[
−
∫ Q2

|t|
dp̂(z , t′)

]
.
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Initial-state radiation: comments

Differential emission probability in backwards evolution:

dp̂(z , t) =
dfb(z , t)

fb(z , t)
=
∑
ac

dt

t

∫
dw

w

αS

2π
Pa→bc(w)

fa(z/w , t)

fb(z , t)
.

I At the hard-subprocess level one b is interpreted as the parton issued from the
hadron; the initial-state branching corrects for that (1/fb) and reinstates the correct
parton density (fa).

I Many initial-state emissions evolve the scale t backwards in time, until the true
parton inside the hadron is reached.
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Hadronization

I The perturbative shower stops when all ”external” partons have a scale below the
resolution scale Q0 ∼ 1GeV, and then they are put on-shell.

I But what one physically observes in a detector are colourless hadrons.

I Need to have a model for passing from partons to hadrons: delicate part since there
is not a strong theoretical understanding of the phenomenon.

I However the formulation of such models can be guided by some phenomenological
considerations.
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Hadronization: cluster model

I Expecially in an angular-ordered
shower colour partners are close in
phase space: colour
”preconfinement”.

I Formation of small-mass colourless
clusters to be decayed into physical
hadrons.

e-   A+e-   A+e-   A+ e-   A+e-A+

a

i

j

Colour is left “behind” by the struck 
quark. The first soft gluon emitted at 
large angle will connect to the beam 
fragments, ensuring that the beam 
fragments can recombine to form 
hadrons, and will allow the struck 
quark to evolve without having to 
worry about what happens to the 
proton fragments.

p

The structure of the perturbative 
evolution leads naturally to the clustering 
in phase-space of colour-singlet parton 
pairs (”preconfinement”). Long-range 
correlations are strongly suppressed. 
Hadronization will only act locally, on low-
mass colour-singlet clusters. 

Colour-singlet 
cluster mass 
distribution

colour-
singlet 
cluster

K
π

π
π

π
K

π
π
π
p 

16
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Hadronization: string model

I From lattice QCD one sees that
the colour-confinement potential of
a qq̄ pair grows linearly with their
distance: V (r) ∼ kr , with
k ∼ 0.2 GeV2.

I This is modeled with a string with
uniform tension (energy per unit
length) k stretched between the q
and the q̄

I At a certain point it becomes
energetically favorable to break the
string in two by creating a new qq̄
pair in the middle of the string.
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Main Monte Carlos available on the market: HERWIG

All HERWIG versions (Fortran and C++) implement angular ordering: subsequent
emissions characterized by smaller and smaller angles.

HERWIG 6: t =
pb · pc
EbEc

' 1− cos θ,

HERWIG++: t =
(pb⊥)2

z2(1− z)2
= t(θ).

I With angular ordering, the parton shower cannot populate the full phase space:
empty regions, called ”dead zones”, will arise.

I Hadronization: cluster model.
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Main Monte Carlos available on the market: PYTHIA

Choice of evolution variables for Fortran and C++ versions:

PYTHIA 6: t = (pb + pc)2 ∼ z(1− z)θ2E 2
a ,

PYTHIA 8: t = (pb)2⊥.

I Simpler variables, but decreasing angles not guaranteed: PYTHIA, on top of
t-ordering, rejects the events that don’t respect the angular ordering.

I Extremely flexible framework. Many tuneable parameters, including ”dangerous”
ones: in particular one has pay attention at the shower staring scale Q to avoid the
shower populating the non-collinear regions.

I Hadronization: string model.
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Main Monte Carlos available on the market: SHERPA

I A new and completely different kind of shower not based on the collinear 1→ 2
branching, but on 2→ 3 elementary process: emission of the daughter off a colour
dipole.

I Real emission matrix element squared decomposed into a sum of dipoles Dmn,k

capturing the soft and collinear singularities in the limits m||n, m soft, and a
factorization deduced in the leading colour approximation:

Dmn,k → B
αS

pm · pn
Kmn,k .

I The shower is developed from a Sudakov form factor

∆ = exp

(
−
∫

dt

t

∫
dz αS Kmn,k

)
.

I It treats correctly the soft gluon emission off a colour dipole, so angular ordering is
built in.

I Hadronization: cluster model.
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Matrix-element corrections

I Parton-shower approach developed near the boundaries of the phase space, where
the cross section is singular: far from there the parton shower is not trustable.
Include real matrix-element information to better describe the tails.

PYTHIA: matrix-element reweighting.

I For some simple 2→ 2 processes, the real emission matrix element (dσ1
ME ) is

computed and compared with the first-emission parton shower cross section (dσ1
MC ).

I The phase space allowed for the shower is maximally extended and the first shower
emission is accepted with ratio dσ1

ME/dσ
1
MC , which ensures a correct hard-emission

spectrum.

HERWIG: filling the dead-zones.

I The allowed region for the parton shower is kept limited, but in the dead zones
radiation is generated according to the correct real-emission matrix-element
distribution.
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Matrix-element corrections

I Why should I want more than that?
Because on the market nowadays there is WAY more.

I Matrix-element shower corrections available only for few very simple 2→ 2
processes.

I It corrects only for the first extra emission (superseded by MLM or CKKW merging).

I It is a tree-level method (superseded by MC@NLO).

Next lecturers will explain in detail!
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Conclusions

I Parton showers are a method complementary to fixed-order PT, trustable where PT
is not and vice-versa.

I They offer a quite reliable description of observables sensitive to many soft and/or
collinear QCD emissions.

I They offer models for converting patrons in hadrons, necessary for all realistic
collider studies.

I Workhorses of all experimental collaboration, from detector calibration to analysis
strategies.

The nicest feature is that parton showers can be combined with PT.
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Extra 1: collinear factorization

a
c

b

a
c

bMn+1 Mn

 Cross section factorization in the collinear limit

|Mn+1|2dΦn+1 � |Mn|2dΦn
dt

t
dz

dφ

2π

αS

2π
Pa→bc(z)

•        virtuality of particle    (could be its     or       ...)
   it represents the hardness of the branching
•        energy fraction of parton   relative to 
•                  Altarelli - Parisi splitting kernel

p⊥a Eaθ

z =

t =

b a

Pa→bc(z) =

θ

θ −→ 0

PSMC I: collinear factorization

Cross section factorization in the collinear limit:

dσn+1 ∼ dσn
dt

t
dz
αS

2π
Pa→bc(z).

I Why isn’t there a t2 in the denominator? Should be the square of a 1/t amplitude...

I Example of q → qg : quark helicity conserved, so |final spin− initial spin| = 1. The
scattering happens in a p-wave, so it is suppressed as t → 0.

I Indeed a factor pb · pc appears for all splittings at the numerator upon explicit
computation.
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Extra 2: a useful analogy

I Sudakov formalism is similar to the physics a radioactive decay of a nucleus: the
number of survived nuclei at time τ changes as

dN(τ)

dτ
= −c(τ)N(τ).

Sign difference since time always increases, while scale t decreases after final-state
emission.

I Differential emission probability at time τ is

dP(τ) = dN(τ)/N(0) = −c(τ) exp

[
−
∫ τ

0

c(τ ′)dτ ′
]
.

I In the branching, the role of the decay time is played by the scale of the parent
particle, and the full ensemble of partons gives a distribution in this variable.

I Scale t has thus the role of evolution variable (as time in decays).
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Extra 3: azimuthal kernels

I Recall the factorization formula

dσn+1 ∼ dσn
dt

t
dz
αS

2π
Pa→bc(z),

obtained integrating over azimuth.

I If not integrated in dφ another term arises, so the complete formula is:

|Mn+1|2dΦn+1 ' dΦn
dt

t
dz

dφ

2π

αS

2π
(Pa→bc(z)|Mn|2 + Qa→bc(z)|M̃n|2).

I Q = azimuthal kernel: arises from the interference of parent particles a with
different polarizations, so it is = 0 if the a = quark (helicity conservation).

I The second term is such that
∫
dφ|M̃n|2 = 0.

I Azimuthal terms to be kept in mind if one wants |Mn+1|2dΦn+1 to represent the
collinear limit of the real amplitude point by point.
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Extra 4: argument for the coupling constant

Each choice of argument for αS equally acceptable at the leading-log. Remember

σn+k ∝ σn α
k
S

∫ Q2

Q2
0

dt

t

∫ t

Q2
0

dt′

t′
...

∫ t(k−2)

Q2
0

dt(k−1)

t(k−1)
∝ σn

(αS

2π

)k
logk(Q2/Q2

0 ).

A convenient choice allows one to automatically include subleading logs.

I One loop running coupling:

αS(t) =
αS(µ2)

1 + αS(µ2)b log t
µ2

∼ αS(µ2)

(
1− αS(µ2)b log

t

µ2

)
.

I Higher-order corrections in the DGLAP equation imply the Altarelli-Parisi kernels to
be modified to Pa→bc(z)→ Pa→bc(z) + αSP

′
a→bc(z).

I P ′a→bc(z) diverges as −b log z(1− z)Pa→bc(z) for g → gg in the soft gluon limit
(just z or 1− z if a quark is there).

I Take this into account by choosing z(1− z)t ∼ p2
⊥ as argument of the coupling.

Indeed, the kernel αSPa→bc(z) becomes

αS[z(1− z)t]Pa→bc(z) ∼ αS(t) (1− αS(t)b log z(1− z))Pa→bc(z)

= αS(t)
(
Pa→bc(z) + αS(t)P ′a→bc

)
.
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