Parton Shower Monte Carlos

Paolo Torrielli

University of Zurich

2012 FR/MG school

Outline

Outline

- Why parton showers

Outline

- Why parton showers
- Final-state showers
- Why parton showers
- Final-state showers
- Sudakov form factor and unitarity
- Why parton showers
- Final-state showers
- Sudakov form factor and unitarity
- Angular ordering

Outline

- Why parton showers
- Final-state showers
- Sudakov form factor and unitarity
- Angular ordering
- Initial-state showers

Outline

- Why parton showers
- Final-state showers
- Sudakov form factor and unitarity
- Angular ordering
- Initial-state showers
- Hadronization

Why Parton Shower Monte Carlos

Why Parton Shower Monte Carlos

- Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number of partons, way less than those taking part to a real collision.

Why Parton Shower Monte Carlos

- Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number of partons, way less than those taking part to a real collision.

Why Parton Shower Monte Carlos

- Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number of partons, way less than those taking part to a real collision.
- Only observables sufficiently inclusive wrt radiation are well predicted by fixed-order PT; for a more exclusive description, it often fails.

Why Parton Shower Monte Carlos

- Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number of partons, way less than those taking part to a real collision.
- Only observables sufficiently inclusive wrt radiation are well predicted by fixed-order PT; for a more exclusive description, it often fails.
- Examples: total cross sections: OK.
$W p_{T}$ in $p p \rightarrow W$ @NLO: NOT OK for small p_{T}.

Why Parton Shower Monte Carlos

- Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number of partons, way less than those taking part to a real collision.
- Only observables sufficiently inclusive wrt radiation are well predicted by fixed-order PT; for a more exclusive description, it often fails.
- Examples: total cross sections: OK.
$W p_{T}$ in $p p \rightarrow W$ @NLO: NOT OK for small p_{T}.
- Can we just live with inclusive quantities? No. A lot of information in exclusive observables.

Why Parton Shower Monte Carlos

- Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number of partons, way less than those taking part to a real collision.
- Only observables sufficiently inclusive wrt radiation are well predicted by fixed-order PT; for a more exclusive description, it often fails.
- Examples: total cross sections: OK.
$W p_{T}$ in $p p \rightarrow W$ @NLO: NOT OK for small p_{T}.
- Can we just live with inclusive quantities? No. A lot of information in exclusive observables.

1st motivation: describe realistically exclusive final states.

Why Parton Shower Monte Carlos

- Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number of partons, way less than those taking part to a real collision.
- Only observables sufficiently inclusive wrt radiation are well predicted by fixed-order PT; for a more exclusive description, it often fails.
- Examples: total cross sections: OK.
$W p_{T}$ in $p p \rightarrow W$ @NLO: NOT OK for small p_{T}.
- Can we just live with inclusive quantities? No. A lot of information in exclusive observables.

1st motivation: describe realistically exclusive final states.

- Fixed-order PT gives a description in terms of patrons, not of physical hadrons.

Why Parton Shower Monte Carlos

- Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number of partons, way less than those taking part to a real collision.
- Only observables sufficiently inclusive wrt radiation are well predicted by fixed-order PT; for a more exclusive description, it often fails.
- Examples: total cross sections: OK.
$W p_{T}$ in $p p \rightarrow W$ @NLO: NOT OK for small p_{T}.
- Can we just live with inclusive quantities? No. A lot of information in exclusive observables.

1st motivation: describe realistically exclusive final states.

- Fixed-order PT gives a description in terms of patrons, not of physical hadrons.
- It does not describe underlying-event, pile-up, ...

Why Parton Shower Monte Carlos

- Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number of partons, way less than those taking part to a real collision.
- Only observables sufficiently inclusive wrt radiation are well predicted by fixed-order PT; for a more exclusive description, it often fails.
- Examples: total cross sections: OK.
$W p_{T}$ in $p p \rightarrow W$ @NLO: NOT OK for small p_{T}.
- Can we just live with inclusive quantities? No. A lot of information in exclusive observables.

1st motivation: describe realistically exclusive final states.

- Fixed-order PT gives a description in terms of patrons, not of physical hadrons.
- It does not describe underlying-event, pile-up, ...

2nd motivation: fill the gap between fixed-order PT and reality.

Why Parton Shower Monte Carlos

- Fixed-order PT (LO, NLO, ... in QCD) accurately describes a very limited number of partons, way less than those taking part to a real collision.
- Only observables sufficiently inclusive wrt radiation are well predicted by fixed-order PT; for a more exclusive description, it often fails.
- Examples: total cross sections: OK.
$W p_{T}$ in $p p \rightarrow W$ @NLO: NOT OK for small p_{T}.
- Can we just live with inclusive quantities? No. A lot of information in exclusive observables.

1st motivation: describe realistically exclusive final states.

- Fixed-order PT gives a description in terms of patrons, not of physical hadrons.
- It does not describe underlying-event, pile-up, ...

2nd motivation: fill the gap between fixed-order PT and reality.

Parton showers offer a versatile tool to realise this.

Example of breakdown of fixed-order PT

$W p_{T}$ in $p p \rightarrow W$ @NLO

Example of breakdown of fixed-order PT

$W p_{T}$ in $p p \rightarrow W$ @NLO

- LO predicts just one bin.

Example of breakdown of fixed-order PT

$W p_{T}$ in $p p \rightarrow W$ @NLO

- LO predicts just one bin.

- NLO has an unphysical discontinuity at $p_{T}=0$.

Example of breakdown of fixed-order PT

$W p_{T}$ in $p p \rightarrow W$ @NLO

- LO predicts just one bin.
- NLO has an unphysical discontinuity at $p_{T}=0$.
- Small p_{T} of the extra radiation is the tricky region.

Example of breakdown of fixed-order PT

$W p_{T}$ in $p p \rightarrow W$ @NLO

- LO predicts just one bin.
- NLO has an unphysical discontinuity at $p_{T}=0$.
- Small p_{T} of the extra radiation is the tricky region.
- Inclusive observables are OK just because they effectively "integrate" over it (cross section, rapidity, ...).

Example of breakdown of fixed-order PT

```
W p
```


- LO predicts just one bin.
- NLO has an unphysical discontinuity at $p_{T}=0$.
- Small p_{T} of the extra radiation is the tricky region.
- Inclusive observables are OK just because they effectively "integrate" over it (cross section, rapidity, ...).
- This region is where to start formulating a complement to fixed-order PT.

Parton branching

$a=$ final state massless QCD parton coming out of a generic hard process, splitting into b and c massless at small angle θ.

Parton branching

$a=$ final state massless QCD parton coming out of a generic hard process, splitting into b and c massless at small angle θ.

- As $\theta \rightarrow 0$, a goes on shell: its branching is related to time scales very long wrt those of the hard interaction $\left(\mathcal{M}_{n}\right)$.

Parton branching

$a=$ final state massless QCD parton coming out of a generic hard process, splitting into b and c massless at small angle θ.

- As $\theta \rightarrow 0$, a goes on shell: its branching is related to time scales very long wrt those of the hard interaction $\left(\mathcal{M}_{n}\right)$.
- Including such a branching can not completely change the desription set up by \mathcal{M}_{n}.

Parton branching

$a=$ final state massless QCD parton coming out of a generic hard process, splitting into b and c massless at small angle θ.

- As $\theta \rightarrow 0$, a goes on shell: its branching is related to time scales very long wrt those of the hard interaction $\left(\mathcal{M}_{n}\right)$.
- Including such a branching can not completely change the desription set up by \mathcal{M}_{n}.
- The whole process cross section should be writeable in this limit as the basic one times some branching probability.

Parton branching

Case $a=q, b=q$ with relative energy $z, c=g$ with relative energy $1-z$.

Parton branching

Case $a=q, b=q$ with relative energy $z, c=g$ with relative energy $1-z$.
Polarizations for small θ :

$$
\begin{aligned}
u_{a}^{+} & =\sqrt{E_{a}}(1,0,1,0), \quad u_{a}^{-}=\sqrt{E_{a}}(0,1,0,-1) \\
u_{b}^{+} & =\sqrt{z E_{a}}(1, \theta(1-z) / 2,1, \theta(1-z) / 2) \\
u_{b}^{-} & =\sqrt{z E_{a}}(-\theta(1-z) / 2,1, \theta(1-z) / 2,-1) \\
\epsilon_{c}^{i n} & =(0,1,0, \theta z), \quad \epsilon_{c}^{\text {out }}=(0,0,1,0)
\end{aligned}
$$

Parton branching

Case $a=q, b=q$ with relative energy $z, c=g$ with relative energy $1-z$.
Polarizations for small θ :

$$
\begin{aligned}
u_{a}^{+} & =\sqrt{E_{a}}(1,0,1,0), \quad u_{a}^{-}=\sqrt{E_{a}}(0,1,0,-1) \\
u_{b}^{+} & =\sqrt{z E_{a}}(1, \theta(1-z) / 2,1, \theta(1-z) / 2) \\
u_{b}^{-} & =\sqrt{z E_{a}}(-\theta(1-z) / 2,1, \theta(1-z) / 2,-1) \\
\epsilon_{c}^{i n} & =(0,1,0, \theta z), \quad \epsilon_{c}^{\text {out }}=(0,0,1,0)
\end{aligned}
$$

Amplitudes in the $t \rightarrow 0$ limit $\left(t=p_{a}^{2}=2 E_{b} E_{c}(1-\cos \theta) \sim z(1-z) E_{a}^{2} \theta^{2}\right)$:

$$
\begin{aligned}
& \mathcal{M}_{n+1}(\pm, \pm, \text { in }) \sim \mathcal{M}_{n} \frac{g_{s} t^{c}}{t} \bar{u}_{b}^{ \pm} \gamma^{\mu} u_{a}^{ \pm} \epsilon_{c}^{i n} \sim-i \mathcal{M}_{n} \frac{g_{s} t^{c}}{\sqrt{t}} \frac{1-z}{\sqrt{1-z}} \\
& \mathcal{M}_{n+1}(\pm, \pm, \text { out })=\mathcal{M}_{n} \frac{g_{s} t^{c}}{t} \bar{u}_{b}^{ \pm} \gamma^{\mu} u_{a}^{ \pm} \epsilon_{c}^{o u t}=\mathcal{M}_{n} \frac{g_{s} t^{c}}{\sqrt{t}} \frac{1+z}{\sqrt{1-z}}
\end{aligned}
$$

Parton branching

Case $a=q, b=q$ with relative energy $z, c=g$ with relative energy $1-z$.
Polarizations for small θ :

$$
\begin{aligned}
u_{a}^{+} & =\sqrt{E_{a}}(1,0,1,0), \quad u_{a}^{-}=\sqrt{E_{a}}(0,1,0,-1) \\
u_{b}^{+} & =\sqrt{z E_{a}}(1, \theta(1-z) / 2,1, \theta(1-z) / 2) \\
u_{b}^{-} & =\sqrt{z E_{a}}(-\theta(1-z) / 2,1, \theta(1-z) / 2,-1) \\
\epsilon_{c}^{i n} & =(0,1,0, \theta z), \quad \epsilon_{c}^{\text {out }}=(0,0,1,0)
\end{aligned}
$$

Amplitudes in the $t \rightarrow 0$ limit $\left(t=p_{a}^{2}=2 E_{b} E_{c}(1-\cos \theta) \sim z(1-z) E_{a}^{2} \theta^{2}\right)$:

$$
\begin{aligned}
& \mathcal{M}_{n+1}(\pm, \pm, \text { in }) \sim \mathcal{M}_{n} \frac{g_{s} t^{c}}{t} \bar{u}_{b}^{ \pm} \gamma^{\mu} u_{a}^{ \pm} \epsilon_{c}^{\text {in }} \sim-i \mathcal{M}_{n} \frac{g_{s} t^{c}}{\sqrt{t}} \frac{1-z}{\sqrt{1-z}} \\
& \mathcal{M}_{n+1}(\pm, \pm, \text { out })=\mathcal{M}_{n} \frac{g_{s} t^{c}}{t} \bar{u}_{b}^{ \pm} \gamma^{\mu} u_{a}^{ \pm} \epsilon_{c}^{o u t}=\mathcal{M}_{n} \frac{g_{s} t^{c}}{\sqrt{t}} \frac{1+z}{\sqrt{1-z}}
\end{aligned}
$$

Phase space: $d \Phi_{n+1}=d \Phi_{n} \frac{d z d t d \phi}{4(2 \pi)^{3}}$.

Parton branching

Case $a=q, b=q$ with relative energy $z, c=g$ with relative energy $1-z$.
Polarizations for small θ :

$$
\begin{aligned}
& u_{a}^{+}=\sqrt{E_{a}}(1,0,1,0), \quad u_{a}^{-}=\sqrt{E_{a}}(0,1,0,-1), \\
& u_{b}^{+}=\sqrt{z E_{a}}(1, \theta(1-z) / 2,1, \theta(1-z) / 2) \\
& u_{b}^{-}=\sqrt{z E_{a}}(-\theta(1-z) / 2,1, \theta(1-z) / 2,-1) \\
& \epsilon_{c}^{i n}=(0,1,0, \theta z), \quad \epsilon_{c}^{\text {out }}=(0,0,1,0)
\end{aligned}
$$

Amplitudes in the $t \rightarrow 0$ limit $\left(t=p_{a}^{2}=2 E_{b} E_{c}(1-\cos \theta) \sim z(1-z) E_{a}^{2} \theta^{2}\right)$:

$$
\begin{aligned}
& \mathcal{M}_{n+1}(\pm, \pm, \text { in }) \sim \mathcal{M}_{n} \frac{g_{s} t^{c}}{t} \bar{u}_{b}^{ \pm} \gamma^{\mu} u_{a}^{ \pm} \epsilon_{c}^{\text {in }} \sim-i \mathcal{M}_{n} \frac{g_{s} t^{c}}{\sqrt{t}} \frac{1-z}{\sqrt{1-z}} \\
& \mathcal{M}_{n+1}(\pm, \pm, \text { out })=\mathcal{M}_{n} \frac{g_{s} t^{c}}{t} \bar{u}_{b}^{ \pm} \gamma^{\mu} u_{a}^{ \pm} \epsilon_{c}^{o u t}=\mathcal{M}_{n} \frac{g_{s} t^{c}}{\sqrt{t}} \frac{1+z}{\sqrt{1-z}}
\end{aligned}
$$

Phase space: $d \Phi_{n+1}=d \Phi_{n} \frac{d z d t d \phi}{4(2 \pi)^{3}}$.

Unpolarized cross section (up to terms regular as $t \rightarrow 0$):

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} C_{F} \frac{1+z^{2}}{1-z}
$$

Collinear factorization

Analogously happens for $g \rightarrow g g$ and $g \rightarrow q \bar{q}$: cross section factorization in the collinear limit:

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

Universal: $P_{a \rightarrow b c}(z)$ just depends on parton identities and energy fraction, not on \mathcal{M}_{n}. It is a sort of "branching probability".

Collinear factorization

Analogously happens for $g \rightarrow g g$ and $g \rightarrow q \bar{q}$: cross section factorization in the collinear limit:

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

Universal: $P_{a \rightarrow b c}(z)$ just depends on parton identities and energy fraction, not on \mathcal{M}_{n}. It is a sort of "branching probability".
$P_{a \rightarrow b c}(z)=$ Altarelli-Parisi splitting kernel $\left(C_{A}=3, C_{F}=4 / 3, T_{R}=1 / 2\right)$:

$$
\begin{aligned}
P_{g \rightarrow q q}(z) & =T_{R}\left[z^{2}+(1-z)^{2}\right], \quad P_{q \rightarrow q g}(z)=C_{F}\left[\frac{1+z^{2}}{1-z}\right] \\
P_{g \rightarrow g g}(z) & =C_{A}\left[z(1-z)+\frac{z}{1-z}+\frac{1-z}{z}\right]
\end{aligned}
$$

Collinear factorization

Analogously happens for $g \rightarrow g g$ and $g \rightarrow q \bar{q}$: cross section factorization in the collinear limit:

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

Universal: $P_{a \rightarrow b c}(z)$ just depends on parton identities and energy fraction, not on \mathcal{M}_{n}. It is a sort of "branching probability".
$P_{a \rightarrow b c}(z)=$ Altarelli-Parisi splitting kernel $\left(C_{A}=3, C_{F}=4 / 3, T_{R}=1 / 2\right)$:

$$
\begin{aligned}
P_{g \rightarrow q q}(z) & =T_{R}\left[z^{2}+(1-z)^{2}\right], \quad P_{q \rightarrow q g}(z)=C_{F}\left[\frac{1+z^{2}}{1-z}\right] \\
P_{g \rightarrow g g}(z) & =C_{A}\left[z(1-z)+\frac{z}{1-z}+\frac{1-z}{z}\right]
\end{aligned}
$$

Comments. 1) Soft singularity as emitted gluon goes soft.
2) Gluons radiate the most.

Collinear factorization

Cross section factorization in the collinear limit:

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

Collinear factorization

Cross section factorization in the collinear limit:

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- t is the "evolution variable" (more on this later): it could be virtuality of a, but also its p_{\perp}^{2}, or $E_{a}^{2} \theta^{2}, \ldots$ (indeed in the collinear limit $p_{a}^{2} \propto p_{\perp}^{2} \propto E_{a}^{2} \theta^{2}$)
It represents the branching scale and tends to 0 in the collinear limit.

Collinear factorization

Cross section factorization in the collinear limit:

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- t is the "evolution variable" (more on this later): it could be virtuality of a, but also its p_{\perp}^{2}, or $E_{a}^{2} \theta^{2}, \ldots$ (indeed in the collinear limit $p_{a}^{2} \propto p_{\perp}^{2} \propto E_{a}^{2} \theta^{2}$)
It represents the branching scale and tends to 0 in the collinear limit.
- $z=$ is the "energy variable": it could be the relative energy of b, but also $\left(p_{b}+p_{\text {rec }}\right)^{2} /\left(p_{a}+p_{\text {rec }}\right)^{2}, \ldots$
It represents the momentum sharing between b and c and tends to 1 in as c goes soft.

Multiple emission

Multiple emission

Now consider \mathcal{M}_{n+1} as the new core process and use the same recipe to get the dominant collinear contribution to the $n+2$-body cross section: add a new branching at angle $\theta^{\prime} \ll \theta$:

$$
\begin{aligned}
d \sigma_{n+2} & \sim d \sigma_{n+1} \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right) \\
& \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right) .
\end{aligned}
$$

Multiple emission

Now consider \mathcal{M}_{n+1} as the new core process and use the same recipe to get the dominant collinear contribution to the $n+2$-body cross section: add a new branching at angle $\theta^{\prime} \ll \theta$:

$$
\begin{aligned}
d \sigma_{n+2} & \sim d \sigma_{n+1} \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right) \\
& \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right)
\end{aligned}
$$

- Can be iterated for an arbitrary number of emissions.

Multiple emission

Now consider \mathcal{M}_{n+1} as the new core process and use the same recipe to get the dominant collinear contribution to the $n+2$-body cross section: add a new branching at angle $\theta^{\prime} \ll \theta$:

$$
\begin{aligned}
d \sigma_{n+2} & \sim d \sigma_{n+1} \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right) \\
& \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right) .
\end{aligned}
$$

- Can be iterated for an arbitrary number of emissions.
- The recipe to get the leading collinear singularity is an iterative sequence of emissions with no memory of the past history of the system, so a Markov chain.

Multiple emission

Now consider \mathcal{M}_{n+1} as the new core process and use the same recipe to get the dominant collinear contribution to the $n+2$-body cross section: add a new branching at angle $\theta^{\prime} \ll \theta$:

$$
\begin{aligned}
d \sigma_{n+2} & \sim d \sigma_{n+1} \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right) \\
& \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) \frac{d t^{\prime}}{t^{\prime}} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{b \rightarrow d e}\left(z^{\prime}\right) .
\end{aligned}
$$

- Can be iterated for an arbitrary number of emissions.
- The recipe to get the leading collinear singularity is an iterative sequence of emissions with no memory of the past history of the system, so a Markov chain.
- Process independence (no reference to $d \sigma_{n}$).

Multiple emission

- Dominant collinear contribution is from the region where subsequent emissions are in strong ordering: $\theta \gg \theta^{\prime} \gg \theta^{\prime \prime} \ldots$

Multiple emission

- Dominant collinear contribution is from the region where subsequent emissions are in strong ordering: $\theta \gg \theta^{\prime} \gg \theta^{\prime \prime} \ldots$
- Rate for multiple strongly-ordered emissions

$$
\sigma_{n+k} \propto \sigma_{n} \alpha_{\mathrm{S}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

$Q=$ typical hard scale of $\mathcal{M}_{n}, Q_{0}=$ small IR cutoff, $Q_{0} \ll Q$, called resolution scale. Typically $Q_{0} \sim 1 \mathrm{GeV}$.

Multiple emission

- Dominant collinear contribution is from the region where subsequent emissions are in strong ordering: $\theta \gg \theta^{\prime} \gg \theta^{\prime \prime} \ldots$
- Rate for multiple strongly-ordered emissions

$$
\sigma_{n+k} \propto \sigma_{n} \alpha_{\mathrm{S}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

$Q=$ typical hard scale of $\mathcal{M}_{n}, Q_{0}=$ small IR cutoff, $Q_{0} \ll Q$, called resolution scale. Typically $Q_{0} \sim 1 \mathrm{GeV}$.

- Each non-ordered configuration misses at least one large log.

Multiple emission

- Dominant collinear contribution is from the region where subsequent emissions are in strong ordering: $\theta \gg \theta^{\prime} \gg \theta^{\prime \prime} \ldots$
- Rate for multiple strongly-ordered emissions

$$
\sigma_{n+k} \propto \sigma_{n} \alpha_{\mathrm{S}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

$Q=$ typical hard scale of $\mathcal{M}_{n}, Q_{0}=$ small IR cutoff, $Q_{0} \ll Q$, called resolution scale. Typically $Q_{0} \sim 1 \mathrm{GeV}$.

- Each non-ordered configuration misses at least one large log.
- Formalism based on strong ordering knows about the leading logarithmic collinear approximation of the total rate.

Multiple emission

- Dominant collinear contribution is from the region where subsequent emissions are in strong ordering: $\theta \gg \theta^{\prime} \gg \theta^{\prime \prime} \ldots$
- Rate for multiple strongly-ordered emissions

$$
\sigma_{n+k} \propto \sigma_{n} \alpha_{\mathrm{S}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

$Q=$ typical hard scale of $\mathcal{M}_{n}, Q_{0}=$ small IR cutoff, $Q_{0} \ll Q$, called resolution scale. Typically $Q_{0} \sim 1 \mathrm{GeV}$.

- Each non-ordered configuration misses at least one large log.
- Formalism based on strong ordering knows about the leading logarithmic collinear approximation of the total rate.
- Now clear why fixed-order PT breaks down at small p_{T} : effective coupling is $\alpha_{\mathrm{S}} \log \left(Q^{2} / Q_{0}^{2}\right)$, not just α_{S}.

Absence of interference

Absence of interference

- The branching sequence from a leg, the parton shower, describes the history of that leg starting from the hard subprocess (Q) all the way down to the non perturbative region $\left(Q_{0}\right)$.

Absence of interference

- The branching sequence from a leg, the parton shower, describes the history of that leg starting from the hard subprocess (Q) all the way down to the non perturbative region (Q_{0}).
- To describe the histories of two such legs the two showers are uncorrelated. Even within the same history, subsequent emissions are uncorrelated.

Absence of interference

- The branching sequence from a leg, the parton shower, describes the history of that leg starting from the hard subprocess (Q) all the way down to the non perturbative region (Q_{0}).
- To describe the histories of two such legs the two showers are uncorrelated. Even within the same history, subsequent emissions are uncorrelated.
- Parton shower misses interference effects among various legs: extreme simplicity at the price of quantum inaccuracy.

Absence of interference

- The branching sequence from a leg, the parton shower, describes the history of that leg starting from the hard subprocess (Q) all the way down to the non perturbative region (Q_{0}).
- To describe the histories of two such legs the two showers are uncorrelated. Even within the same history, subsequent emissions are uncorrelated.
- Parton shower misses interference effects among various legs: extreme simplicity at the price of quantum inaccuracy.
- Nevertheless, it captures the leading singularities, so it gives the amazing possibility of describing an arbitrary number of emissions.

Leading colour

- Interference effects are suppressed by powers of the N_{c}. Why? The overlap of different colour states (interference) is smaller than the overlap of equal colour states (amplitude squared).

Leading colour

- Interference effects are suppressed by powers of the N_{c}. Why? The overlap of different colour states (interference) is smaller than the overlap of equal colour states (amplitude squared).

- In the picture: interference (left) suppressed by N_{c}^{2} wrt amplitude squared (right).

Leading colour

- Interference effects are suppressed by powers of the N_{c}. Why? The overlap of different colour states (interference) is smaller than the overlap of equal colour states (amplitude squared).

- In the picture: interference (left) suppressed by N_{c}^{2} wrt amplitude squared (right).
- Absence of interference in the emission chain implies that the colour flow in the parton shower is correct only for $N_{c} \rightarrow \infty$.

Emission probability and Sudakov form factor

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

Emission probability and Sudakov form factor

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Differential probability for branching $a \rightarrow b c$ between t and $t+d t$ (knowing that no emission occurred before):

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

Emission probability and Sudakov form factor

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Differential probability for branching $a \rightarrow b c$ between t and $t+d t$ (knowing that no emission occurred before):

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Starting from Q^{2}, the probability that a does not split until $t\left(\equiv \Delta\left(Q^{2}, t\right)\right)$ is the product of the probabilities that it did not split in any interval $d t_{k}$ between Q^{2} and t :

$$
\Delta\left(Q^{2}, t\right)=\prod_{k}\left[1-\sum_{b c} \frac{d t_{k}}{t_{k}} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]=\exp \left[-\int_{t}^{Q^{2}} d p\left(t^{\prime}\right)\right] \leq 1
$$

Emission probability and Sudakov form factor

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Differential probability for branching $a \rightarrow b c$ between t and $t+d t$ (knowing that no emission occurred before):

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Starting from Q^{2}, the probability that a does not split until $t\left(\equiv \Delta\left(Q^{2}, t\right)\right)$ is the product of the probabilities that it did not split in any interval $d t_{k}$ between Q^{2} and t :

$$
\Delta\left(Q^{2}, t\right)=\prod_{k}\left[1-\sum_{b c} \frac{d t_{k}}{t_{k}} \int d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)\right]=\exp \left[-\int_{t}^{Q^{2}} d p\left(t^{\prime}\right)\right] \leq 1
$$

- $\Delta\left(Q^{2}, t\right)$ is the Sudakov form factor: it resums the leading logs!

Emission probability and Sudakov form factor

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Differential probability for branching $a \rightarrow b c$ between t and $t+d t$ (knowing that no emission occurred before):

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Starting from Q^{2}, the probability that a does not split until $t\left(\equiv \Delta\left(Q^{2}, t\right)\right)$ is the product of the probabilities that it did not split in any interval $d t_{k}$ between Q^{2} and t :

$$
\Delta\left(Q^{2}, t\right)=\prod_{k}\left[1-\sum_{b c} \frac{d t_{k}}{t_{k}} \int d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)\right]=\exp \left[-\int_{t}^{Q^{2}} d p\left(t^{\prime}\right)\right] \leq 1
$$

- $\Delta\left(Q^{2}, t\right)$ is the Sudakov form factor: it resums the leading logs!
- Properties

$$
\begin{aligned}
& \frac{d \Delta\left(Q^{2}, t\right)}{d t}=\frac{d p(t)}{d t} \Delta\left(Q^{2}, t\right) \\
& \Delta\left(t_{a}, t_{b}\right)=\Delta\left(t_{a}, t_{c}\right) \Delta\left(t_{c}, t_{b}\right)=\frac{\Delta\left(t_{a}, t_{c}\right)}{\Delta\left(t_{b}, t_{c}\right)}
\end{aligned}
$$

Unitarity

Unitarity

- Define $d P_{k}$ as the probability for exactly k ordered splittings at given scales:

Unitarity

- Define $d P_{k}$ as the probability for exactly k ordered splittings at given scales:

$$
d P_{1}\left(t_{1}\right)=\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, Q_{0}^{2}\right)
$$

Unitarity

- Define $d P_{k}$ as the probability for exactly k ordered splittings at given scales:

$$
\begin{aligned}
d P_{1}\left(t_{1}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, Q_{0}^{2}\right) \\
d P_{2}\left(t_{1}, t_{2}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, t_{2}\right) d p\left(t_{2}\right) \Delta\left(t_{2}, Q_{0}^{2}\right) \Theta\left(t_{1}-t_{2}\right)
\end{aligned}
$$

Unitarity

- Define $d P_{k}$ as the probability for exactly k ordered splittings at given scales:

$$
\begin{aligned}
d P_{1}\left(t_{1}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, Q_{0}^{2}\right) \\
d P_{2}\left(t_{1}, t_{2}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, t_{2}\right) d p\left(t_{2}\right) \Delta\left(t_{2}, Q_{0}^{2}\right) \Theta\left(t_{1}-t_{2}\right)
\end{aligned}
$$

$$
\ldots=\ldots
$$

Unitarity

- Define $d P_{k}$ as the probability for exactly k ordered splittings at given scales:

$$
\begin{aligned}
d P_{1}\left(t_{1}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, Q_{0}^{2}\right), \\
d P_{2}\left(t_{1}, t_{2}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, t_{2}\right) d p\left(t_{2}\right) \Delta\left(t_{2}, Q_{0}^{2}\right) \Theta\left(t_{1}-t_{2}\right), \\
\ldots & =\ldots \\
d P_{k}\left(t_{1}, \ldots, t_{k}\right) & =\Delta\left(Q^{2}, Q_{0}^{2}\right) \prod_{j=1}^{k} d p\left(t_{j}\right) \Theta\left(t_{j-1}-t_{j}\right) .
\end{aligned}
$$

Unitarity

- Define $d P_{k}$ as the probability for exactly k ordered splittings at given scales:

$$
\begin{aligned}
d P_{1}\left(t_{1}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, Q_{0}^{2}\right), \\
d P_{2}\left(t_{1}, t_{2}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, t_{2}\right) d p\left(t_{2}\right) \Delta\left(t_{2}, Q_{0}^{2}\right) \Theta\left(t_{1}-t_{2}\right), \\
\ldots & =\ldots \\
d P_{k}\left(t_{1}, \ldots, t_{k}\right) & =\Delta\left(Q^{2}, Q_{0}^{2}\right) \prod_{j=1}^{k} d p\left(t_{j}\right) \Theta\left(t_{j-1}-t_{j}\right) .
\end{aligned}
$$

- Integrated probability for k splittings (regardless of the scales):

$$
P_{k} \equiv \int d P_{k}\left(t_{1}, \ldots, t_{k}\right)=\Delta\left(Q^{2}, Q_{0}^{2}\right) \frac{1}{k!}\left[\int_{Q_{0}^{2}}^{Q^{2}} d p(t)\right]^{k}, \quad \forall k=0,1, \ldots
$$

Unitarity

- Define $d P_{k}$ as the probability for exactly k ordered splittings at given scales:

$$
\begin{aligned}
d P_{1}\left(t_{1}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, Q_{0}^{2}\right), \\
d P_{2}\left(t_{1}, t_{2}\right) & =\Delta\left(Q^{2}, t_{1}\right) d p\left(t_{1}\right) \Delta\left(t_{1}, t_{2}\right) d p\left(t_{2}\right) \Delta\left(t_{2}, Q_{0}^{2}\right) \Theta\left(t_{1}-t_{2}\right), \\
\ldots & =\ldots \\
d P_{k}\left(t_{1}, \ldots, t_{k}\right) & =\Delta\left(Q^{2}, Q_{0}^{2}\right) \prod_{j=1}^{k} d p\left(t_{j}\right) \Theta\left(t_{j-1}-t_{j}\right) .
\end{aligned}
$$

- Integrated probability for k splittings (regardless of the scales):

$$
P_{k} \equiv \int d P_{k}\left(t_{1}, \ldots, t_{k}\right)=\Delta\left(Q^{2}, Q_{0}^{2}\right) \frac{1}{k!}\left[\int_{Q_{0}^{2}}^{Q^{2}} d p(t)\right]^{k}, \quad \forall k=0,1, \ldots
$$

- Sum of probabilities:

$$
\sum_{k=0}^{\infty} P_{k}=\Delta\left(Q^{2}, Q_{0}^{2}\right) \sum_{k=0}^{\infty} \frac{1}{k!}\left[\int_{Q_{0}^{2}}^{Q^{2}} d p(t)\right]^{k}=\Delta\left(Q^{2}, Q_{0}^{2}\right) \exp \left[\int_{Q_{0}^{2}}^{Q^{2}} d p(t)\right]=1
$$

Unitarity

Unitarity

Cross section for 0 or 1 emissions from leg a in the parton shower:

$$
d \sigma_{\leq 1}=d \sigma_{n}\left[\Delta\left(Q^{2}, Q_{0}^{2}\right)+\Delta\left(Q^{2}, Q_{0}^{2}\right) \sum_{b c} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]
$$

Unitarity

Cross section for 0 or 1 emissions from leg a in the parton shower:

$$
d \sigma_{\leq 1}=d \sigma_{n}\left[\Delta\left(Q^{2}, Q_{0}^{2}\right)+\Delta\left(Q^{2}, Q_{0}^{2}\right) \sum_{b c} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]
$$

Expand at first order in α_{s} :

$$
d \sigma_{\leq 1} \sim d \sigma_{n}\left[1-\sum_{b c} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t^{\prime}}{t^{\prime}} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)+\sum_{b c} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]
$$

Unitarity

Cross section for 0 or 1 emissions from leg a in the parton shower:

$$
d \sigma_{\leq 1}=d \sigma_{n}\left[\Delta\left(Q^{2}, Q_{0}^{2}\right)+\Delta\left(Q^{2}, Q_{0}^{2}\right) \sum_{b c} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]
$$

Expand at first order in α_{s} :

$$
d \sigma_{\leq 1} \sim d \sigma_{n}\left[1-\sum_{b c} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t^{\prime}}{t^{\prime}} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)+\sum_{b c} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]
$$

- Same structure of the two latter terms, with opposite signs: cancellation of divergences between the approximate virtual- and approximate real-emission cross sections.

Unitarity

Cross section for 0 or 1 emissions from leg a in the parton shower:

$$
d \sigma_{\leq 1}=d \sigma_{n}\left[\Delta\left(Q^{2}, Q_{0}^{2}\right)+\Delta\left(Q^{2}, Q_{0}^{2}\right) \sum_{b c} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]
$$

Expand at first order in α_{s} :

$$
d \sigma_{\leq 1} \sim d \sigma_{n}\left[1-\sum_{b c} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t^{\prime}}{t^{\prime}} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)+\sum_{b c} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]
$$

- Same structure of the two latter terms, with opposite signs: cancellation of divergences between the approximate virtual- and approximate real-emission cross sections.
- The cancellation of infinities in the shower comes out as the basic statement that $P($ emission $)+P($ no emission $)=1$, without effort.

Unitarity

Cross section for 0 or 1 emissions from leg a in the parton shower:

$$
d \sigma_{\leq 1}=d \sigma_{n}\left[\Delta\left(Q^{2}, Q_{0}^{2}\right)+\Delta\left(Q^{2}, Q_{0}^{2}\right) \sum_{b c} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]
$$

Expand at first order in α_{s} :

$$
d \sigma_{\leq 1} \sim d \sigma_{n}\left[1-\sum_{b c} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t^{\prime}}{t^{\prime}} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)+\sum_{b c} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)\right]
$$

- Same structure of the two latter terms, with opposite signs: cancellation of divergences between the approximate virtual- and approximate real-emission cross sections.
- The cancellation of infinities in the shower comes out as the basic statement that $P($ emission $)+P($ no emission $)=1$, without effort.
- Analogy: in $e^{+} e^{-} \rightarrow$ jets the jet separation plays the role of the resolution scale Q_{0}. Unitarity is implemented by $\sigma_{\text {NLO }}=\sigma_{2}+\sigma_{3}=$ finite, and one can define probabilities for jet multiplicity m as $\sigma_{m} / \sigma_{\text {NLO }}$.

Summary of lecture 1

Summary of lecture 1

- Differential branching probability in final-state radiation

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) .
$$

Summary of lecture 1

- Differential branching probability in final-state radiation

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Probability of no emission in the shower between scales Q^{2} and t (Sudakov form factor):

$$
\Delta\left(Q^{2}, t\right)=\exp \left[-\int_{t}^{Q^{2}} \frac{d t^{\prime}}{t^{\prime}} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)\right] \leq 1
$$

Summary of lecture 1

- Differential branching probability in final-state radiation

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Probability of no emission in the shower between scales Q^{2} and t (Sudakov form factor):

$$
\Delta\left(Q^{2}, t\right)=\exp \left[-\int_{t}^{Q^{2}} \frac{d t^{\prime}}{t^{\prime}} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)\right] \leq 1
$$

- Unitarity: Sudakov is a sensible probability distribution, respecting $P($ emission $)+P($ no emission $)=1$.

Summary of lecture 1

- Differential branching probability in final-state radiation

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) .
$$

- Probability of no emission in the shower between scales Q^{2} and t (Sudakov form factor):

$$
\Delta\left(Q^{2}, t\right)=\exp \left[-\int_{t}^{Q^{2}} \frac{d t^{\prime}}{t^{\prime}} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)\right] \leq 1
$$

- Unitarity: Sudakov is a sensible probability distribution, respecting $P($ emission $)+P($ no emission $)=1$.
The shower does not change normalizations, just affects how events are distributed.

Summary of lecture 1

- Differential branching probability in final-state radiation

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z) .
$$

- Probability of no emission in the shower between scales Q^{2} and t (Sudakov form factor):

$$
\Delta\left(Q^{2}, t\right)=\exp \left[-\int_{t}^{Q^{2}} \frac{d t^{\prime}}{t^{\prime}} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)\right] \leq 1
$$

- Unitarity: Sudakov is a sensible probability distribution, respecting $P($ emission $)+P($ no emission $)=1$.
The shower does not change normalizations, just affects how events are distributed.
- The shower misses interference effects.

Implementation: Monte Carlo method

Implementation: Monte Carlo method

- Extract evolution variable t according to the Sudakov.

Implementation: Monte Carlo method

- Extract evolution variable t according to the Sudakov. Solve the equation $\Delta\left(Q^{2}, t\right)=R_{\#}$, with $R_{\#}$ a flat random number between 0 and 1 . This correctly reproduces the probability distribution (probability of extracting a scale t between t_{1} and t_{2} is $\left.\Delta\left(Q^{2}, t_{2}\right)-\Delta\left(Q^{2}, t_{1}\right)\right)$.

Implementation: Monte Carlo method

- Extract evolution variable t according to the Sudakov. Solve the equation $\Delta\left(Q^{2}, t\right)=R_{\#}$, with $R_{\#}$ a flat random number between 0 and 1 . This correctly reproduces the probability distribution (probability of extracting a scale t between t_{1} and t_{2} is $\Delta\left(Q^{2}, t_{2}\right)-\Delta\left(Q^{2}, t_{1}\right)$).

- Extract energy faction z and identities b and c according to $P_{a \rightarrow b c}(z)$.

Implementation: Monte Carlo method

- Extract evolution variable t according to the Sudakov.
Solve the equation $\Delta\left(Q^{2}, t\right)=R_{\#}$, with $R_{\#}$ a flat random number between 0 and 1 .
This correctly reproduces the probability distribution (probability of extracting a scale t between t_{1} and t_{2} is $\left.\Delta\left(Q^{2}, t_{2}\right)-\Delta\left(Q^{2}, t_{1}\right)\right)$.

- Extract energy faction z and identities b and c according to $P_{a \rightarrow b c}(z)$. If only one possible branching, define

$$
I(z) \equiv \int^{z} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right)
$$

and solve $I(z) / I\left(z_{\max }\right)=R_{\#}^{\prime}$.
For many possible branchings, pick one at random according to $I_{i}\left(z_{\max }\right) / \sum_{j} I_{j}\left(z_{\max }\right)$ and then extract z.

Implementation: Monte Carlo method

- Extract evolution variable t according to the Sudakov.
Solve the equation $\Delta\left(Q^{2}, t\right)=R_{\#}$, with $R_{\#}$ a flat random number between 0 and 1 .
This correctly reproduces the probability distribution (probability of extracting a scale t between t_{1} and t_{2} is $\left.\Delta\left(Q^{2}, t_{2}\right)-\Delta\left(Q^{2}, t_{1}\right)\right)$.

- Extract energy faction z and identities b and c according to $P_{a \rightarrow b c}(z)$. If only one possible branching, define

$$
I(z) \equiv \int^{z} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right)
$$

and solve $I(z) / I\left(z_{\max }\right)=R_{\#}^{\prime}$.
For many possible branchings, pick one at random according to $I_{i}\left(z_{\max }\right) / \sum_{j} I_{j}\left(z_{\max }\right)$ and then extract z.

- Extract ϕ (flat).

Implementation: Monte Carlo method

- Extract evolution variable t according to the Sudakov.
Solve the equation $\Delta\left(Q^{2}, t\right)=R_{\#}$, with $R_{\#}$ a flat random number between 0 and 1 .
This correctly reproduces the probability distribution (probability of extracting a scale t between t_{1} and t_{2} is $\left.\Delta\left(Q^{2}, t_{2}\right)-\Delta\left(Q^{2}, t_{1}\right)\right)$.

- Extract energy faction z and identities b and c according to $P_{a \rightarrow b c}(z)$. If only one possible branching, define

$$
I(z) \equiv \int^{z} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right)
$$

and solve $I(z) / I\left(z_{\max }\right)=R_{\#}^{\prime}$.
For many possible branchings, pick one at random according to $I_{i}\left(z_{\max }\right) / \sum_{j} I_{j}\left(z_{\max }\right)$ and then extract z.

- Extract ϕ (flat).
- Reiterate, updating the maximum scale for the Sudakov, until all the 'external' partons are at a scale smaller than a threshold $Q_{0}^{2} \sim 1 \mathrm{GeV}$.

Implementation: Monte Carlo method

- Extract evolution variable t according to the Sudakov.
Solve the equation $\Delta\left(Q^{2}, t\right)=R_{\#}$, with $R_{\#}$ a flat random number between 0 and 1 .
This correctly reproduces the probability distribution (probability of extracting a scale t between t_{1} and t_{2} is $\left.\Delta\left(Q^{2}, t_{2}\right)-\Delta\left(Q^{2}, t_{1}\right)\right)$.

- Extract energy faction z and identities b and c according to $P_{a \rightarrow b c}(z)$. If only one possible branching, define

$$
I(z) \equiv \int^{z} d z^{\prime} \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right)
$$

and solve $I(z) / I\left(z_{\max }\right)=R_{\#}^{\prime}$.
For many possible branchings, pick one at random according to $I_{i}\left(z_{\max }\right) / \sum_{j} I_{j}\left(z_{\max }\right)$ and then extract z.

- Extract ϕ (flat).
- Reiterate, updating the maximum scale for the Sudakov, until all the 'external' partons are at a scale smaller than a threshold $Q_{0}^{2} \sim 1 \mathrm{GeV}$.
- Put partons on shell and hadronize (see later).

Including subleading logs: angular ordering
Soft gluon limit:

Including subleading logs: angular ordering
Soft gluon limit:

$$
\begin{aligned}
& \quad d \sigma_{n+1}=d \sigma_{n} C_{F} \frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{d z}{z} \frac{d \phi}{2 \pi} d \cos \theta \frac{\zeta_{i j}}{\zeta_{i k} \zeta_{j k}}, \\
& \text { with } \zeta_{a b} \equiv 1-\cos \theta_{a b}
\end{aligned}
$$

$$
\frac{\zeta_{i j}}{\zeta_{i k} \zeta_{j k}}=\frac{1}{2}\left[\frac{\zeta_{i j}-\zeta_{j k}}{\zeta_{i k} \zeta_{j k}}+\frac{1}{\zeta_{j k}}\right]+(i \rightarrow j) \equiv W_{i}+W_{j}
$$

$$
\int \frac{d \phi}{2 \pi} W_{i}=\frac{\Theta\left(\theta_{i j}-\theta_{i k}\right)}{\zeta_{i k}} \Longrightarrow
$$

- Soft gluon limit: radiation inside cones allowed and described by the eikonal approximation, outside the cones suppressed and $=0$ after azimuth integration: destructive interference effect.

Including subleading logs: angular ordering

Soft gluon limit:

$$
\begin{aligned}
& \quad d \sigma_{n+1}=d \sigma_{n} C_{F} \frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{d z}{z} \frac{d \phi}{2 \pi} d \cos \theta \frac{\zeta_{i j}}{\zeta_{i k} \zeta_{j k}}, \\
& \text { with } \zeta_{a b} \equiv 1-\cos \theta_{a b}
\end{aligned}
$$

$$
\frac{\zeta_{i j}}{\zeta_{i k} \zeta_{j k}}=\frac{1}{2}\left[\frac{\zeta_{i j}-\zeta_{j k}}{\zeta_{i k} \zeta_{j k}}+\frac{1}{\zeta_{j k}}\right]+(i \rightarrow j) \equiv W_{i}+W_{j}
$$

$$
\int \frac{d \phi}{2 \pi} W_{i}=\frac{\Theta\left(\theta_{i j}-\theta_{i k}\right)}{\zeta_{i k}} \Longrightarrow
$$

- Soft gluon limit: radiation inside cones allowed and described by the eikonal approximation, outside the cones suppressed and $=0$ after azimuth integration: destructive interference effect.
- This can be reiterated to further gluon radiation: emission angle gets smaller and smaller.

Angular ordering in a parton shower

Angular ordering in a parton shower

- Soft limit of the cross section after azimuth integration is

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d \zeta}{\zeta} \frac{d z}{z} \frac{\alpha_{\mathrm{S}}}{2 \pi} C_{F}
$$

with $\zeta=1-\cos \theta$ (note that ordering in $\theta=$ ordering in ζ).

Angular ordering in a parton shower

- Soft limit of the cross section after azimuth integration is

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d \zeta}{\zeta} \frac{d z}{z} \frac{\alpha_{s}}{2 \pi} C_{F}
$$

with $\zeta=1-\cos \theta$ (note that ordering in $\theta=$ ordering in ζ).

- Emission non-zero only in a cone: interference effect.

Angular ordering in a parton shower

- Soft limit of the cross section after azimuth integration is

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d \zeta}{\zeta} \frac{d z}{z} \frac{\alpha_{\mathrm{s}}}{2 \pi} C_{F}
$$

with $\zeta=1-\cos \theta$ (note that ordering in $\theta=$ ordering in ζ).

- Emission non-zero only in a cone: interference effect.
- Previous formula still gives a Markov chain: convenient way of including a quantum effect in a classical fashion \Rightarrow it is not exact that all interferences are neglected in a parton shower.

Angular ordering in a parton shower

- Soft limit of the cross section after azimuth integration is

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d \zeta}{\zeta} \frac{d z}{z} \frac{\alpha_{\mathrm{s}}}{2 \pi} C_{F}
$$

with $\zeta=1-\cos \theta$ (note that ordering in $\theta=$ ordering in ζ).

- Emission non-zero only in a cone: interference effect.
- Previous formula still gives a Markov chain: convenient way of including a quantum effect in a classical fashion \Rightarrow it is not exact that all interferences are neglected in a parton shower.
- Improved by replacing $C_{F} \frac{1}{z} \rightarrow P_{a \rightarrow b c}(z)$ to get the correct collinear non-soft limit.
- Some interference effects are included \Rightarrow subdominant contributions

Angular ordering in a parton shower

- Soft limit of the cross section after azimuth integration is

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d \zeta}{\zeta} \frac{d z}{z} \frac{\alpha_{\mathrm{s}}}{2 \pi} C_{F}
$$

with $\zeta=1-\cos \theta$ (note that ordering in $\theta=$ ordering in ζ).

- Emission non-zero only in a cone: interference effect.
- Previous formula still gives a Markov chain: convenient way of including a quantum effect in a classical fashion \Rightarrow it is not exact that all interferences are neglected in a parton shower.
- Improved by replacing $C_{F} \frac{1}{z} \rightarrow P_{a \rightarrow b c}(z)$ to get the correct collinear non-soft limit.
- Some interference effects are included \Rightarrow subdominant contributions
- Indeed one can show that the angular-ordered algorithm reproduces the leading and next-to leading collinear logarithms in the soft gluon limit.

Initial-state radiation

Up to now we have dealt with final-state radiation: what about initial-state radiation?

Initial-state radiation

Up to now we have dealt with final-state radiation: what about initial-state radiation?

- For final-state radiation one starts from the hard subprocess and evolves "forward in time", towards the final-state particles.

Initial-state radiation

Up to now we have dealt with final-state radiation: what about initial-state radiation?

- For final-state radiation one starts from the hard subprocess and evolves "forward in time", towards the final-state particles.
- For initial-state radiation adopt instead backwards evolution: start from the hard subprocess, and evolve back to the incoming colliding hadrons.

Initial-state radiation

Up to now we have dealt with final-state radiation: what about initial-state radiation?

- For final-state radiation one starts from the hard subprocess and evolves "forward in time", towards the final-state particles.
- For initial-state radiation adopt instead backwards evolution: start from the hard subprocess, and evolve back to the incoming colliding hadrons.
- Use DGLAP equation to determine the parton evolution backwards in time.

DGLAP equation

- Establish the dependence of the parton distribution function $f_{b}(z, t)$ on the scale t.

DGLAP equation

- Establish the dependence of the parton distribution function $f_{b}(z, t)$ on the scale t.
- Change of f_{b} between t and $t+d t=$ probability to have a parent a at scale t and energy fraction $z^{\prime}>z$, times the probability for it to branch to b between t and $t+d t$, summed over all possible starting values z^{\prime}

DGLAP equation

- Establish the dependence of the parton distribution function $f_{b}(z, t)$ on the scale t.
- Change of f_{b} between t and $t+d t=$ probability to have a parent a at scale t and energy fraction $z^{\prime}>z$, times the probability for it to branch to b between t and $t+d t$, summed over all possible starting values z^{\prime}
- In formulae:

$$
\begin{aligned}
d f_{b}(z, t) & =\frac{d t}{t} \sum_{a c} \int_{z}^{1} d z^{\prime} \int_{0}^{1} d w \frac{\alpha_{\mathrm{s}}}{2 \pi} f_{a}\left(z^{\prime}, t\right) P_{a \rightarrow b c}(w) \delta\left(z-w z^{\prime}\right) \\
& =\frac{d t}{t} \sum_{a c} \int_{0}^{1} \frac{d w}{w} \frac{\alpha_{\mathrm{s}}}{2 \pi} f_{a}\left(\frac{z}{w}, t\right) P_{a \rightarrow b c}(w)
\end{aligned}
$$

Initial-state radiation

- Infintesimal change in $f_{b}(z, t)$:

$$
d f_{b}(z, t)=\frac{d t}{t} \sum_{a c} \int_{0}^{1} \frac{d w}{w} \frac{\alpha_{\mathrm{S}}}{2 \pi} f_{a}\left(\frac{z}{w}, t\right) P_{a \rightarrow b c}(w)
$$

Initial-state radiation

- Infintesimal change in $f_{b}(z, t)$:

$$
d f_{b}(z, t)=\frac{d t}{t} \sum_{a c} \int_{0}^{1} \frac{d w}{w} \frac{\alpha_{\mathrm{S}}}{2 \pi} f_{a}\left(\frac{z}{w}, t\right) P_{a \rightarrow b c}(w)
$$

- Differential emission probability in backwards evolution = infinitesimal change $d f_{b}(z, t)$ normalized to $f_{b}(z, t)$:

$$
d \hat{p}(z, t)=\frac{d f_{b}(z, t)}{f_{b}(z, t)}=\sum_{a c} \frac{d t}{t} \int \frac{d w}{w} \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{f_{a}(z / w, t)}{f_{b}(z, t)} P_{a \rightarrow b c}(w)
$$

as opposed to the final state radiation probability

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

Initial-state radiation

- Infintesimal change in $f_{b}(z, t)$:

$$
d f_{b}(z, t)=\frac{d t}{t} \sum_{a c} \int_{0}^{1} \frac{d w}{w} \frac{\alpha_{\mathrm{S}}}{2 \pi} f_{a}\left(\frac{z}{w}, t\right) P_{a \rightarrow b c}(w)
$$

- Differential emission probability in backwards evolution = infinitesimal change $d f_{b}(z, t)$ normalized to $f_{b}(z, t)$:

$$
d \hat{p}(z, t)=\frac{d f_{b}(z, t)}{f_{b}(z, t)}=\sum_{a c} \frac{d t}{t} \int \frac{d w}{w} \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{f_{a}(z / w, t)}{f_{b}(z, t)} P_{a \rightarrow b c}(w)
$$

as opposed to the final state radiation probability

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Thus, initial-state radiation, from the hard process backwards in time, can be described in a way similar to final-state radiation, but with a different $d p$.

Initial-state radiation

- Infintesimal change in $f_{b}(z, t)$:

$$
d f_{b}(z, t)=\frac{d t}{t} \sum_{a c} \int_{0}^{1} \frac{d w}{w} \frac{\alpha_{\mathrm{S}}}{2 \pi} f_{a}\left(\frac{z}{w}, t\right) P_{a \rightarrow b c}(w)
$$

- Differential emission probability in backwards evolution = infinitesimal change $d f_{b}(z, t)$ normalized to $f_{b}(z, t)$:

$$
d \hat{p}(z, t)=\frac{d f_{b}(z, t)}{f_{b}(z, t)}=\sum_{a c} \frac{d t}{t} \int \frac{d w}{w} \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{f_{a}(z / w, t)}{f_{b}(z, t)} P_{a \rightarrow b c}(w)
$$

as opposed to the final state radiation probability

$$
d p(t)=\sum_{b c} \frac{d t}{t} \int d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Thus, initial-state radiation, from the hard process backwards in time, can be described in a way similar to final-state radiation, but with a different $d p$.
- Consequently the Sudakov form factor for initial-state radiation is

$$
\hat{\Delta}\left(z, Q^{2}, t\right)=\exp \left[-\int_{|t|}^{Q^{2}} d \hat{p}\left(z, t^{\prime}\right)\right]
$$

Initial-state radiation: comments

Differential emission probability in backwards evolution:

$$
d \hat{p}(z, t)=\frac{d f_{b}(z, t)}{f_{b}(z, t)}=\sum_{a c} \frac{d t}{t} \int \frac{d w}{w} \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(w) \frac{f_{a}(z / w, t)}{f_{b}(z, t)} .
$$

Initial-state radiation: comments

Differential emission probability in backwards evolution:

$$
d \hat{p}(z, t)=\frac{d f_{b}(z, t)}{f_{b}(z, t)}=\sum_{a c} \frac{d t}{t} \int \frac{d w}{w} \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b c}(w) \frac{f_{a}(z / w, t)}{f_{b}(z, t)} .
$$

- At the hard-subprocess level one b is interpreted as the parton issued from the hadron; the initial-state branching corrects for that $\left(1 / f_{b}\right)$ and reinstates the correct parton density $\left(f_{a}\right)$.

Initial-state radiation: comments

Differential emission probability in backwards evolution:

$$
d \hat{p}(z, t)=\frac{d f_{b}(z, t)}{f_{b}(z, t)}=\sum_{a c} \frac{d t}{t} \int \frac{d w}{w} \frac{\alpha_{s}}{2 \pi} P_{a \rightarrow b c}(w) \frac{f_{a}(z / w, t)}{f_{b}(z, t)} .
$$

- At the hard-subprocess level one b is interpreted as the parton issued from the hadron; the initial-state branching corrects for that $\left(1 / f_{b}\right)$ and reinstates the correct parton density $\left(f_{a}\right)$.
- Many initial-state emissions evolve the scale t backwards in time, until the true parton inside the hadron is reached.

Hadronization

Hadronization

- The perturbative shower stops when all "external" partons have a scale below the resolution scale $Q_{0} \sim 1 \mathrm{GeV}$, and then they are put on-shell.

Hadronization

- The perturbative shower stops when all "external" partons have a scale below the resolution scale $Q_{0} \sim 1 \mathrm{GeV}$, and then they are put on-shell.
- But what one physically observes in a detector are colourless hadrons.

Hadronization

- The perturbative shower stops when all "external" partons have a scale below the resolution scale $Q_{0} \sim 1 \mathrm{GeV}$, and then they are put on-shell.
- But what one physically observes in a detector are colourless hadrons.
- Need to have a model for passing from partons to hadrons: delicate part since there is not a strong theoretical understanding of the phenomenon.

Hadronization

- The perturbative shower stops when all "external" partons have a scale below the resolution scale $Q_{0} \sim 1 \mathrm{GeV}$, and then they are put on-shell.
- But what one physically observes in a detector are colourless hadrons.
- Need to have a model for passing from partons to hadrons: delicate part since there is not a strong theoretical understanding of the phenomenon.
- However the formulation of such models can be guided by some phenomenological considerations.

Hadronization: cluster model

Hadronization: cluster model

- Expecially in an angular-ordered shower colour partners are close in phase space: colour "preconfinement".
- Formation of small-mass colourless clusters to be decayed into physical hadrons.

Hadronization: string model

Hadronization: string model

- From lattice QCD one sees that the colour-confinement potential of a $q \bar{q}$ pair grows linearly with their distance: $V(r) \sim k r$, with $k \sim 0.2 \mathrm{GeV}^{2}$.

Fig. 2.9. QCD potential va. R (in lattice units) from lattice QCD. Figure from ref. [23].

Hadronization: string model

- From lattice QCD one sees that the colour-confinement potential of a $q \bar{q}$ pair grows linearly with their distance: $V(r) \sim k r$, with $k \sim 0.2 \mathrm{GeV}^{2}$.

Fig. 2.9. QCD potential va. R (in lattice units) from lattice QCD. Figure from

Main Monte Carlos available on the market: HERWIG

Main Monte Carlos available on the market: HERWIG

All HERWIG versions (Fortran and $\mathrm{C}++$) implement angular ordering: subsequent emissions characterized by smaller and smaller angles.

$$
\begin{aligned}
& \text { HERWIG 6: } \quad t=\frac{p_{b} \cdot p_{c}}{E_{b} E_{c}} \simeq 1-\cos \theta \\
& \text { HERWIG }++: \quad t=\frac{\left(p_{b \perp}\right)^{2}}{z^{2}(1-z)^{2}}=t(\theta)
\end{aligned}
$$

Main Monte Carlos available on the market: HERWIG

All HERWIG versions (Fortran and $\mathrm{C}++$) implement angular ordering: subsequent emissions characterized by smaller and smaller angles.

$$
\begin{aligned}
& \text { HERWIG 6: } \quad t=\frac{p_{b} \cdot p_{c}}{E_{b} E_{c}} \simeq 1-\cos \theta \\
& \text { HERWIG }++: \quad t=\frac{\left(p_{b \perp}\right)^{2}}{z^{2}(1-z)^{2}}=t(\theta)
\end{aligned}
$$

- With angular ordering, the parton shower cannot populate the full phase space: empty regions, called "dead zones", will arise.

Main Monte Carlos available on the market: HERWIG

All HERWIG versions (Fortran and $\mathrm{C}++$) implement angular ordering: subsequent emissions characterized by smaller and smaller angles.

$$
\begin{aligned}
& \text { HERWIG 6: } \quad t=\frac{p_{b} \cdot p_{c}}{E_{b} E_{c}} \simeq 1-\cos \theta \\
& \text { HERWIG }++: \quad t=\frac{\left(p_{b \perp}\right)^{2}}{z^{2}(1-z)^{2}}=t(\theta)
\end{aligned}
$$

- With angular ordering, the parton shower cannot populate the full phase space: empty regions, called "dead zones", will arise.
- Hadronization: cluster model.

Main Monte Carlos available on the market: PYTHIA

Choice of evolution variables for Fortran and $C++$ versions:

$$
\begin{array}{ll}
\text { PYTHIA 6: } & t=\left(p_{b}+p_{c}\right)^{2} \sim z(1-z) \theta^{2} E_{a}^{2} \\
\text { PYTHIA 8: } & t=\left(p_{b}\right)_{\perp}^{2} .
\end{array}
$$

Main Monte Carlos available on the market: PYTHIA

Choice of evolution variables for Fortran and C++ versions:

$$
\begin{array}{ll}
\text { PYTHIA 6: } & t=\left(p_{b}+p_{c}\right)^{2} \sim z(1-z) \theta^{2} E_{a}^{2} \\
\text { PYTHIA 8: } & t=\left(p_{b}\right)_{\perp}^{2} .
\end{array}
$$

- Simpler variables, but decreasing angles not guaranteed: PYTHIA, on top of t-ordering, rejects the events that don't respect the angular ordering.

Main Monte Carlos available on the market: PYTHIA

Choice of evolution variables for Fortran and C++ versions:

$$
\begin{array}{ll}
\text { PYTHIA 6: } & t=\left(p_{b}+p_{c}\right)^{2} \sim z(1-z) \theta^{2} E_{a}^{2} \\
\text { PYTHIA 8: } & t=\left(p_{b}\right)_{\perp}^{2} .
\end{array}
$$

- Simpler variables, but decreasing angles not guaranteed: PYTHIA, on top of t-ordering, rejects the events that don't respect the angular ordering.
- Extremely flexible framework. Many tuneable parameters, including "dangerous" ones: in particular one has pay attention at the shower staring scale Q to avoid the shower populating the non-collinear regions.

Main Monte Carlos available on the market: PYTHIA

Choice of evolution variables for Fortran and C++ versions:

$$
\begin{array}{ll}
\text { PYTHIA 6: } & t=\left(p_{b}+p_{c}\right)^{2} \sim z(1-z) \theta^{2} E_{a}^{2} \\
\text { PYTHIA 8: } & t=\left(p_{b}\right)_{\perp}^{2} .
\end{array}
$$

- Simpler variables, but decreasing angles not guaranteed: PYTHIA, on top of t-ordering, rejects the events that don't respect the angular ordering.
- Extremely flexible framework. Many tuneable parameters, including "dangerous" ones: in particular one has pay attention at the shower staring scale Q to avoid the shower populating the non-collinear regions.
- Hadronization: string model.

Main Monte Carlos available on the market: SHERPA

Main Monte Carlos available on the market: SHERPA

- A new and completely different kind of shower not based on the collinear $1 \rightarrow 2$ branching, but on $2 \rightarrow 3$ elementary process: emission of the daughter off a colour dipole.

Main Monte Carlos available on the market: SHERPA

- A new and completely different kind of shower not based on the collinear $1 \rightarrow 2$ branching, but on $2 \rightarrow 3$ elementary process: emission of the daughter off a colour dipole.
- Real emission matrix element squared decomposed into a sum of dipoles $D_{m n, k}$ capturing the soft and collinear singularities in the limits $m \| n, m$ soft, and a factorization deduced in the leading colour approximation:

$$
D_{m n, k} \rightarrow B \frac{\alpha_{\mathrm{S}}}{p_{m} \cdot p_{n}} K_{m n, k}
$$

Main Monte Carlos available on the market: SHERPA

- A new and completely different kind of shower not based on the collinear $1 \rightarrow 2$ branching, but on $2 \rightarrow 3$ elementary process: emission of the daughter off a colour dipole.
- Real emission matrix element squared decomposed into a sum of dipoles $D_{m n, k}$ capturing the soft and collinear singularities in the limits $m \| n, m$ soft, and a factorization deduced in the leading colour approximation:

$$
D_{m n, k} \rightarrow B \frac{\alpha_{\mathrm{S}}}{p_{m} \cdot p_{n}} K_{m n, k}
$$

- The shower is developed from a Sudakov form factor

$$
\Delta=\exp \left(-\int \frac{d t}{t} \int d z \alpha_{\mathrm{S}} K_{m n, k}\right)
$$

Main Monte Carlos available on the market: SHERPA

- A new and completely different kind of shower not based on the collinear $1 \rightarrow 2$ branching, but on $2 \rightarrow 3$ elementary process: emission of the daughter off a colour dipole.
- Real emission matrix element squared decomposed into a sum of dipoles $D_{m n, k}$ capturing the soft and collinear singularities in the limits $m \| n, m$ soft, and a factorization deduced in the leading colour approximation:

$$
D_{m n, k} \rightarrow B \frac{\alpha_{\mathrm{S}}}{p_{m} \cdot p_{n}} K_{m n, k}
$$

- The shower is developed from a Sudakov form factor

$$
\Delta=\exp \left(-\int \frac{d t}{t} \int d z \alpha_{\mathrm{S}} K_{m n, k}\right)
$$

- It treats correctly the soft gluon emission off a colour dipole, so angular ordering is built in.

Main Monte Carlos available on the market: SHERPA

- A new and completely different kind of shower not based on the collinear $1 \rightarrow 2$ branching, but on $2 \rightarrow 3$ elementary process: emission of the daughter off a colour dipole.
- Real emission matrix element squared decomposed into a sum of dipoles $D_{m n, k}$ capturing the soft and collinear singularities in the limits $m \| n, m$ soft, and a factorization deduced in the leading colour approximation:

$$
D_{m n, k} \rightarrow B \frac{\alpha_{\mathrm{S}}}{p_{m} \cdot p_{n}} K_{m n, k}
$$

- The shower is developed from a Sudakov form factor

$$
\Delta=\exp \left(-\int \frac{d t}{t} \int d z \alpha_{\mathrm{S}} K_{m n, k}\right)
$$

- It treats correctly the soft gluon emission off a colour dipole, so angular ordering is built in.
- Hadronization: cluster model.

Matrix-element corrections

- Parton-shower approach developed near the boundaries of the phase space, where the cross section is singular: far from there the parton shower is not trustable. Include real matrix-element information to better describe the tails.

Matrix-element corrections

- Parton-shower approach developed near the boundaries of the phase space, where the cross section is singular: far from there the parton shower is not trustable. Include real matrix-element information to better describe the tails.

PYTHIA: matrix-element reweighting.

- For some simple $2 \rightarrow 2$ processes, the real emission matrix element ($d \sigma_{M E}^{1}$) is computed and compared with the first-emission parton shower cross section ($d \sigma_{M C}^{1}$).
- The phase space allowed for the shower is maximally extended and the first shower emission is accepted with ratio $d \sigma_{M E}^{1} / d \sigma_{M C}^{1}$, which ensures a correct hard-emission spectrum.

Matrix-element corrections

- Parton-shower approach developed near the boundaries of the phase space, where the cross section is singular: far from there the parton shower is not trustable. Include real matrix-element information to better describe the tails.

PYTHIA: matrix-element reweighting.

- For some simple $2 \rightarrow 2$ processes, the real emission matrix element ($d \sigma_{M E}^{1}$) is computed and compared with the first-emission parton shower cross section ($d \sigma_{M C}^{1}$).
- The phase space allowed for the shower is maximally extended and the first shower emission is accepted with ratio $d \sigma_{M E}^{1} / d \sigma_{M C}^{1}$, which ensures a correct hard-emission spectrum.

HERWIG: filling the dead-zones.

- The allowed region for the parton shower is kept limited, but in the dead zones radiation is generated according to the correct real-emission matrix-element distribution.

Matrix-element corrections

Matrix-element corrections

- Why should I want more than that?

Matrix-element corrections

- Why should I want more than that?

Because on the market nowadays there is WAY more.

Matrix-element corrections

- Why should I want more than that?

Because on the market nowadays there is WAY more.

- Matrix-element shower corrections available only for few very simple $2 \rightarrow 2$ processes.

Matrix-element corrections

- Why should I want more than that? Because on the market nowadays there is WAY more.
- Matrix-element shower corrections available only for few very simple $2 \rightarrow 2$ processes.
- It corrects only for the first extra emission (superseded by MLM or CKKW merging).

Matrix-element corrections

- Why should I want more than that? Because on the market nowadays there is WAY more.
- Matrix-element shower corrections available only for few very simple $2 \rightarrow 2$ processes.
- It corrects only for the first extra emission (superseded by MLM or CKKW merging).
- It is a tree-level method (superseded by MC@NLO).

Next lecturers will explain in detail!

Conclusions

Conclusions

- Parton showers are a method complementary to fixed-order PT, trustable where PT is not and vice-versa.

Conclusions

- Parton showers are a method complementary to fixed-order PT, trustable where PT is not and vice-versa.
- They offer a quite reliable description of observables sensitive to many soft and/or collinear QCD emissions.

Conclusions

- Parton showers are a method complementary to fixed-order PT, trustable where PT is not and vice-versa.
- They offer a quite reliable description of observables sensitive to many soft and/or collinear QCD emissions.
- They offer models for converting patrons in hadrons, necessary for all realistic collider studies.

Conclusions

- Parton showers are a method complementary to fixed-order PT, trustable where PT is not and vice-versa.
- They offer a quite reliable description of observables sensitive to many soft and/or collinear QCD emissions.
- They offer models for converting patrons in hadrons, necessary for all realistic collider studies.
- Workhorses of all experimental collaboration, from detector calibration to analysis strategies.

Conclusions

- Parton showers are a method complementary to fixed-order PT, trustable where PT is not and vice-versa.
- They offer a quite reliable description of observables sensitive to many soft and/or collinear QCD emissions.
- They offer models for converting patrons in hadrons, necessary for all realistic collider studies.
- Workhorses of all experimental collaboration, from detector calibration to analysis strategies.

The nicest feature is that parton showers can be combined with PT.

Backup slides

Extra 1: collinear factorization

Cross section factorization in the collinear limit:

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Why isn't there a t^{2} in the denominator? Should be the square of a $1 / t$ amplitude...

Extra 1: collinear factorization

Cross section factorization in the collinear limit:

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{S}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

- Why isn't there a t^{2} in the denominator? Should be the square of a $1 / t$ amplitude...
- Example of $q \rightarrow q g$: quark helicity conserved, so |final spin - initial spin $\mid=1$. The scattering happens in a p-wave, so it is suppressed as $t \rightarrow 0$.
- Indeed a factor $p_{b} \cdot p_{c}$ appears for all splittings at the numerator upon explicit computation.

Extra 2: a useful analogy

Extra 2: a useful analogy

- Sudakov formalism is similar to the physics a radioactive decay of a nucleus: the number of survived nuclei at time τ changes as

$$
\frac{d N(\tau)}{d \tau}=-c(\tau) N(\tau)
$$

Sign difference since time always increases, while scale t decreases after final-state emission.

Extra 2: a useful analogy

- Sudakov formalism is similar to the physics a radioactive decay of a nucleus: the number of survived nuclei at time τ changes as

$$
\frac{d N(\tau)}{d \tau}=-c(\tau) N(\tau)
$$

Sign difference since time always increases, while scale t decreases after final-state emission.

- Differential emission probability at time τ is

$$
d P(\tau)=d N(\tau) / N(0)=-c(\tau) \exp \left[-\int_{0}^{\tau} c\left(\tau^{\prime}\right) d \tau^{\prime}\right]
$$

Extra 2: a useful analogy

- Sudakov formalism is similar to the physics a radioactive decay of a nucleus: the number of survived nuclei at time τ changes as

$$
\frac{d N(\tau)}{d \tau}=-c(\tau) N(\tau)
$$

Sign difference since time always increases, while scale t decreases after final-state emission.

- Differential emission probability at time τ is

$$
d P(\tau)=d N(\tau) / N(0)=-c(\tau) \exp \left[-\int_{0}^{\tau} c\left(\tau^{\prime}\right) d \tau^{\prime}\right]
$$

- In the branching, the role of the decay time is played by the scale of the parent particle, and the full ensemble of partons gives a distribution in this variable.

Extra 2: a useful analogy

- Sudakov formalism is similar to the physics a radioactive decay of a nucleus: the number of survived nuclei at time τ changes as

$$
\frac{d N(\tau)}{d \tau}=-c(\tau) N(\tau)
$$

Sign difference since time always increases, while scale t decreases after final-state emission.

- Differential emission probability at time τ is

$$
d P(\tau)=d N(\tau) / N(0)=-c(\tau) \exp \left[-\int_{0}^{\tau} c\left(\tau^{\prime}\right) d \tau^{\prime}\right]
$$

- In the branching, the role of the decay time is played by the scale of the parent particle, and the full ensemble of partons gives a distribution in this variable.
- Scale t has thus the role of evolution variable (as time in decays).

Extra 3: azimuthal kernels

Extra 3: azimuthal kernels

- Recall the factorization formula

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

obtained integrating over azimuth.

Extra 3: azimuthal kernels

- Recall the factorization formula

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

obtained integrating over azimuth.

- If not integrated in $d \phi$ another term arises, so the complete formula is:

$$
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \simeq d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{s}}}{2 \pi}\left(P_{a \rightarrow b c}(z)\left|\mathcal{M}_{n}\right|^{2}+Q_{a \rightarrow b c}(z)\left|\tilde{\mathcal{M}}_{n}\right|^{2}\right)
$$

Extra 3: azimuthal kernels

- Recall the factorization formula

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

obtained integrating over azimuth.

- If not integrated in $d \phi$ another term arises, so the complete formula is:

$$
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \simeq d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{\mathrm{s}}}{2 \pi}\left(P_{a \rightarrow b c}(z)\left|\mathcal{M}_{n}\right|^{2}+Q_{a \rightarrow b c}(z)\left|\tilde{\mathcal{M}}_{n}\right|^{2}\right)
$$

- $Q=$ azimuthal kernel: arises from the interference of parent particles a with different polarizations, so it is $=0$ if the $a=$ quark (helicity conservation).

Extra 3: azimuthal kernels

- Recall the factorization formula

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

obtained integrating over azimuth.

- If not integrated in $d \phi$ another term arises, so the complete formula is:

$$
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \simeq d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{s}}{2 \pi}\left(P_{a \rightarrow b c}(z)\left|\mathcal{M}_{n}\right|^{2}+Q_{a \rightarrow b c}(z)\left|\tilde{\mathcal{M}}_{n}\right|^{2}\right)
$$

- $Q=$ azimuthal kernel: arises from the interference of parent particles a with different polarizations, so it is $=0$ if the $a=$ quark (helicity conservation).
- The second term is such that $\int d \phi\left|\tilde{\mathcal{M}}_{n}\right|^{2}=0$.

Extra 3: azimuthal kernels

- Recall the factorization formula

$$
d \sigma_{n+1} \sim d \sigma_{n} \frac{d t}{t} d z \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

obtained integrating over azimuth.

- If not integrated in $d \phi$ another term arises, so the complete formula is:

$$
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \simeq d \Phi_{n} \frac{d t}{t} d z \frac{d \phi}{2 \pi} \frac{\alpha_{s}}{2 \pi}\left(P_{a \rightarrow b c}(z)\left|\mathcal{M}_{n}\right|^{2}+Q_{a \rightarrow b c}(z)\left|\tilde{\mathcal{M}}_{n}\right|^{2}\right)
$$

- $Q=$ azimuthal kernel: arises from the interference of parent particles a with different polarizations, so it is $=0$ if the $a=$ quark (helicity conservation).
- The second term is such that $\int d \phi\left|\tilde{\mathcal{M}}_{n}\right|^{2}=0$.
- Azimuthal terms to be kept in mind if one wants $\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1}$ to represent the collinear limit of the real amplitude point by point.

Extra 4: argument for the coupling constant

Extra 4: argument for the coupling constant

Each choice of argument for α_{s} equally acceptable at the leading-log. Remember

$$
\sigma_{n+k} \propto \sigma_{n} \alpha_{\mathrm{S}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

A convenient choice allows one to automatically include subleading logs.

Extra 4: argument for the coupling constant

Each choice of argument for α_{s} equally acceptable at the leading-log. Remember

$$
\sigma_{n+k} \propto \sigma_{n} \alpha_{\mathrm{S}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

A convenient choice allows one to automatically include subleading logs.

- One loop running coupling:

$$
\alpha_{\mathrm{S}}(t)=\frac{\alpha_{\mathrm{S}}\left(\mu^{2}\right)}{1+\alpha_{\mathrm{S}}\left(\mu^{2}\right) b \log \frac{t}{\mu^{2}}} \sim \alpha_{\mathrm{S}}\left(\mu^{2}\right)\left(1-\alpha_{\mathrm{S}}\left(\mu^{2}\right) b \log \frac{t}{\mu^{2}}\right) .
$$

Extra 4: argument for the coupling constant

Each choice of argument for α_{s} equally acceptable at the leading-log. Remember

$$
\sigma_{n+k} \propto \sigma_{n} \alpha_{\mathrm{S}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

A convenient choice allows one to automatically include subleading logs.

- One loop running coupling:

$$
\alpha_{\mathrm{S}}(t)=\frac{\alpha_{\mathrm{S}}\left(\mu^{2}\right)}{1+\alpha_{\mathrm{S}}\left(\mu^{2}\right) b \log \frac{t}{\mu^{2}}} \sim \alpha_{\mathrm{S}}\left(\mu^{2}\right)\left(1-\alpha_{\mathrm{S}}\left(\mu^{2}\right) b \log \frac{t}{\mu^{2}}\right) .
$$

- Higher-order corrections in the DGLAP equation imply the Altarelli-Parisi kernels to be modified to $P_{a \rightarrow b c}(z) \rightarrow P_{a \rightarrow b c}(z)+\alpha_{\mathrm{S}} P_{a \rightarrow b c}^{\prime}(z)$.

Extra 4: argument for the coupling constant

Each choice of argument for α_{s} equally acceptable at the leading-log. Remember

$$
\sigma_{n+k} \propto \sigma_{n} \alpha_{\mathrm{S}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

A convenient choice allows one to automatically include subleading logs.

- One loop running coupling:

$$
\alpha_{\mathrm{S}}(t)=\frac{\alpha_{\mathrm{S}}\left(\mu^{2}\right)}{1+\alpha_{\mathrm{S}}\left(\mu^{2}\right) b \log \frac{t}{\mu^{2}}} \sim \alpha_{\mathrm{S}}\left(\mu^{2}\right)\left(1-\alpha_{\mathrm{S}}\left(\mu^{2}\right) b \log \frac{t}{\mu^{2}}\right) .
$$

- Higher-order corrections in the DGLAP equation imply the Altarelli-Parisi kernels to be modified to $P_{a \rightarrow b c}(z) \rightarrow P_{a \rightarrow b c}(z)+\alpha_{S} P_{a \rightarrow b c}(z)$.
- $P_{a \rightarrow b c}^{\prime}(z)$ diverges as $-b \log z(1-z) P_{a \rightarrow b c}(z)$ for $g \rightarrow g g$ in the soft gluon limit (just z or $1-z$ if a quark is there).

Extra 4: argument for the coupling constant

Each choice of argument for α_{S} equally acceptable at the leading-log. Remember

$$
\sigma_{n+k} \propto \sigma_{n} \alpha_{\mathrm{S}}^{k} \int_{Q_{0}^{2}}^{Q^{2}} \frac{d t}{t} \int_{Q_{0}^{2}}^{t} \frac{d t^{\prime}}{t^{\prime}} \ldots \int_{Q_{0}^{2}}^{t^{(k-2)}} \frac{d t^{(k-1)}}{t^{(k-1)}} \propto \sigma_{n}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{k} \log ^{k}\left(Q^{2} / Q_{0}^{2}\right)
$$

A convenient choice allows one to automatically include subleading logs.

- One loop running coupling:

$$
\alpha_{\mathrm{S}}(t)=\frac{\alpha_{\mathrm{S}}\left(\mu^{2}\right)}{1+\alpha_{\mathrm{S}}\left(\mu^{2}\right) b \log \frac{t}{\mu^{2}}} \sim \alpha_{\mathrm{S}}\left(\mu^{2}\right)\left(1-\alpha_{\mathrm{S}}\left(\mu^{2}\right) b \log \frac{t}{\mu^{2}}\right) .
$$

- Higher-order corrections in the DGLAP equation imply the Altarelli-Parisi kernels to be modified to $P_{a \rightarrow b c}(z) \rightarrow P_{a \rightarrow b c}(z)+\alpha_{\mathrm{S}} P_{a \rightarrow b c}^{\prime}(z)$.
- $P_{a \rightarrow b c}^{\prime}(z)$ diverges as $-b \log z(1-z) P_{a \rightarrow b c}(z)$ for $g \rightarrow g g$ in the soft gluon limit (just z or $1-z$ if a quark is there).
- Take this into account by choosing $z(1-z) t \sim p_{\perp}^{2}$ as argument of the coupling. Indeed, the kernel $\alpha_{\mathrm{S}} P_{a \rightarrow b c}(z)$ becomes

$$
\begin{aligned}
\alpha_{\mathrm{S}}[z(1-z) t] P_{a \rightarrow b c}(z) & \sim \alpha_{\mathrm{S}}(t)\left(1-\alpha_{\mathrm{S}}(t) b \log z(1-z)\right) P_{a \rightarrow b c}(z) \\
& =\alpha_{\mathrm{S}}(t)\left(P_{\mathrm{a} \rightarrow b c}(z)+\alpha_{\mathrm{S}}(t) P_{a \rightarrow b c}^{\prime}\right)
\end{aligned}
$$

