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• What is the Matrix Element Method ?

• What is MadWeight ?

•  How to use MadWeight ?                                 
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New physics searches at the LHC

due to 

- the complexity of the signatures,
- small S/B expected ratios, 

this may be very complicated !

Experimental
events

Lagrangian
L(m1,g1,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

PROBLEM  #1:

from a sample of experimental 
events, how can we learn more 
about the structure and the 
parameters of the Lagrangian ?

➪ need for a sophisticated procedure 
to discriminate between di f ferent 
theoretical assumptions (e.g. for m1,g1, ...) 
from a sample of experimental events
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the discriminator is built upon Monte Carlo 
events only,

the discriminator is built upon hard-scattering 
matrix elements and Monte Carlo events

Two distinct approaches are used at hadron colliders:

Approach 1: 

Approach 2: 

= subject of this lecture
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Lagrangian
L(p1,p2,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 
Experimental

events

From the previous lectures, we have learnt  
that one can simulate Monte Carlo events 
for any model  that can be defined in the 
form of a Lagrangian 

 Approach 1
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Lagrangian
L(p1,p2,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 
Experimental

events

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Event file Event file

backgroundsignal
TH output:

 Approach 1
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Lagrangian
L(p1,p2,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Detector 
Resolution

Experimental
events

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Selection 
procedure

TH
EXP

hadron-level
event files

Discr. variable based 
on MC events

n
u
m

b
e
r 

o
f 
e
v
e
n
ts

discriminant

signal
background

detector-level
selected events

 Approach 1
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Lagrangian
L(p1,p2,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Detector 
Resolution

Experimental
events

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Selection 
procedure

TH
EXP

hadron-level
event files

Discr. variable based 
on MC events

n
u
m

b
e
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o
f 
e
v
e
n
ts

discriminant

signal
background

detector-level
selected events

‣ theory information is passed 
through Monte Carlo events only

‣samples of events serve as an input 
to a kinematic method to build  the 
discriminator 

 Approach 1
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‣ Simple case: discriminator built on one reconstructed 
observable, e.g. the invariant mass of two leptons

‣ The discriminant power can be enhanced by using a 
sophisticated algorithm (NN, BDT) which analyses the 
distribution of MC events with respect to a large number of 
observables

1.  Reconstruct the distribution of events 
with respect to d=m(l+,l-) from MC 
events, under B-only and S+B hypotheses,

2.  compare with the distribution of exp. 
events with respect to d

 Approach 1

Thursday 4 October 2012



Lagrangian
L(p1,p2,...)

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Detector 
Resolution

Experimental
events

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Selection 
procedure

TH
EXP

hadron-level
event files

Discr. variable based 
on MC events

n
u
m

b
e
r 

o
f 
e
v
e
n
ts

discriminant

signal
background

detector-level
selected events

‣ theory information is passed 
through Monte Carlo events only

‣samples of events serve as an input 
to a kinematic method to build  the 
discriminator 

 Approach 1
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Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Showering/
Hadronization

Detector 
Resolution

Experimental
events

‣ theory information is passed via    
a (partly) analytic probability 
density function (+ via MC events)

‣ the discriminator is built upon this 
probability density function (e. g. 
using a likelihood procedure)

Probability Density 
Function (PDF)

Discr. variable built 
upon PDF +calibration

 Approach II

Selection 
procedure

detector-level
selected events

hadron-level
event files

n
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e
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Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Detector 
Resolution

Experimental
events

Probability Density 
Function (PDF)

Discr. variable built 
upon PDF +calibration

 Approach II

Selection 
procedure

detector-level
selected events

hadron-level
event files

Probability Density 
Function (PDF)

delicate task (accuracy ?)

“Matrix Element Method”:

‣model to approximate the 
Probability Density Function 
in the case of hadron-hadron 
collisions
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‣ construction of the PDF based on hard scattering matrix elements

‣ definition of the discriminating variable: likelihood built upon this 
PDF

Matrix Element Method 

Define a Probability 
Density Function using 

matrix elements

Evaluate the probability  
at each event under the 
hypotheses α=h1,h2,...

Combine the weights 
into a likelihood

P (x|α) wi(α) = P (xi|α)

:  kinematics of the reconstructed event

:  theoretical assumption

x
α

L(α) ≈
∏

i

P (xi|α)

MEM likelihood analysis

matrix element weight
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imagine we live in an ideal world, with an 
ideal detector that reconstruct 

Reweighing events with matrix elements

✓ all the final state objects

✓ at the scale Q= scale of the hard interaction

✓ with an infinite resolution
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  : matrix element 
under the signal hypothesis

under these conditions,  consider the following Higgs search: 

µ+

µ−

b

b̄

Z

h

q

q̄

signal

in this analysis, an event x corresponds to                                  

µ+

µ−

b

b̄

Z
q

q̄

background

pµ+ , pµ− , pb, pb̄

MS MB : matrix element under 
the background hypothesis

P (x|B) =
φ(x)
σB

|MB(x)|2P (x|S) =
φ(x)
σS

|MS(x)|2

Reweighing events with matrix elements

Define a probability 
density function using 

matrix elements
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Evaluate the probability 
for each event under the 

hypotheses α=S or B

 0.01

 0.1

 1

 0  0.2  0.4  0.6  0.8  1

e
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background events
signal events

d(x) =
[
1 +

P (x|B)
P (x|S)

]−1

d is a discriminator based on the phase-space distribution of the events

Reweighing events with matrix element
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Defining the likelihood

Combine the weights 
into one likelihood

Given N experimental events, you can test the S+B 
hypothesis versus the B-only hypothesis 

If  s,b =expected numbers of signal and background events is known, 
you can also use this information to improve the discriminating power

Likelihood for the B-only hypothesis:

Likelihood for S+B hypothesis:

see Jorgen’s talk

Pois(N |b)
N∏

i=1

P (xi|B)

Pois(N |s+ b)
N∏

i=1

[sP (xi|S) + bP (xi|B)]/(s+ b)
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Real experiment

in a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

1.   missing energy 

some particles escape from the detector 
without any interaction (neutrino, wimp, ...)

example: top-quark pair production, di-leptonic channel

t

t̄

µ−
µ+

νµ

ν̄µ

g

b

b̄

W+

W−
g

Thursday 4 October 2012



in a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

∆(t1, t2) = exp
{
−

∫ t1

t2

dt′

t′

∫
dz

αs(t′)
2π

P (z)
}

2.   showering/hadronization effects

a high energy collision is a multi-scale process, but a fixed-order matrix 
element provides a relevant description only for the hard scale Q 

hard scattering showering hadronization

matrix element at 
fixed order in αs

physics

description tool 

Q ~1 GeV

Sudakov form factors simulation model
tuned to the data

non-branching probability between scales t1 and t2

t3t2t1

Real experiment
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in a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

3.   experimental resolution/reconstruction algorithm 

the final state objects (hadrons, leptons) are 
reconstructed with a finite resolution

Real experiment

Thursday 4 October 2012



MEM prescription for the PDF

in a real experiment, a reconstructed event cannot be weighted by a 
unique matrix element:

1.   missing energy P(x,α) must be summed over the 
unobserved degrees of freedom

convolute with a transfer function W(x,y)
= probability that x is reconstructed given 
   that y has been produced

y

reconstructed
events

detector 
resolution

showering/
hadronization

parton-level 
event

xW

 0

 0.04

 0.08

-30 -15  0  15  30

ex: transfer function
 on jet energy

Ep-Ej (GeV)

2.   showering/hadronization effets

3.   experimental resolution/reconstruction algorithm 

selection 
procedure

Thursday 4 October 2012



Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

“Assumed” factorization in MEM:

W (x, y)

|M(y)|2

The prescription to extract the transfer function relies on a 
one-to-one assignment between reconstructed jets and partons

‣ this prescription is ambiguous beyond LO 
‣ current definition of the pdf in the MEM has LO accuracy only

(including resolution)

Thursday 4 October 2012



• real detector: we need to marginalize over unconstrained 
information and to convolute with the resolution function W for 
the measured quantities

Definition of the PDF in the MEM

transfer function
extracted from 
MC simulation

tree-level 
matrix element 

integration on the 
parton-level phase-space 

the probability density P(x| α) is normalized to 1    

normalization:

P (xi, α) =
1

σobs

1
N

∑

jet perm.

∫
dφy|M |2(y)W (xi,y)Acc(x)

∫
dxW (x, y)Acc(x) = ε(y)

see Jorgen’s talkg(x′|!α, !θ) =
∫

R(x, x′|!α)fX(x|!θ)dx
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First MEM analyses at the Tevatron

Top-quark mass measurement from     production in hadron collisions

t

t̄

j

µ+

νµ

j

g

b

b̄

W+

W−
g

t

t̄

µ−
µ+

νµ

ν̄µ

g

b

b̄

W+

W−
g

D0, 2006; CDF 2007.

semi-leptonic channel

dileptonic channel

D0, 2007; CDF 2007.

Examples of Matrix Element analyses

top-quark mass determination from top-quark pair events

Results for the semi-leptonic channel (D0 collaboration)

0.4 fb−1

175 events

MadWeight – p. 8

[DO Phys. Rev. D75 092005, 2006]

tt̄

 Significant improvement for the measurement 
of the top-quark mass
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 Matrix element method

How can we evaluate the probability 

density function P(x|a) in practice ?

Lagrangian

L(p1,p2,...)
hard sc. Matrix 

Elements 
Parton-level

 Events 

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

Showering/
Hadronization

Detector 
Resolution

Experimental

events

! theory information is passed via    
a (partly) analytic probability 
density function (+ via MC events)

! the discriminator is build upon this 
probability density function (e. g. 
using a likelihood procedure)

Probability Density 
Function (PDF)

Discr. variable built 
upon PDF +calibration

 Approach II

Selection 
procedure

detector-level
selected events

h
ad

ro
n
-level

even
t fi

les

Thursday 27 September 2012
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Practical Evaluation of the PDF

transfer functiontree-level 
matrix element 

integration on the 
parton-level phase-space 

P (xi, α) =
1

σobs

1
N

∑

jet perm.

∫
dφy|M |2(y)W (xi,y)Acc(x)
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Practical Evaluation of the PDF

transfer functiontree-level 
matrix element 

integration on the 
parton-level phase-space 

P (xi, α) =
1

σobs

1
N

∑

jet perm.

∫
dφy|M |2(y)W (xi,y)Acc(x)

✓available in mg5 for 
a very large set of 
processes
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Practical Evaluation of the PDF

transfer functiontree-level 
matrix element 

integration on the 
parton-level phase-space 

P (xi, α) =
1

σobs

1
N

∑

jet perm.

∫
dφy|M |2(y)W (xi,y)Acc(x)

✓available in mg5 for 
a very large set of 
processes

✓can be extracted 
from Monte Carlo 
similations
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Practical Evaluation of the PDF

transfer functiontree-level 
matrix element 

integration on the 
parton-level phase-space 

P (xi, α) =
1

σobs

1
N

∑

jet perm.

∫
dφy|M |2(y)W (xi,y)Acc(x)

✓available in mg5 for 
a very large set of 
processes

✓can be extracted 
from Monte Carlo 
similations

‣ Monte Carlo 
integration ?
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Monte Carlo integration

Std deviation: integration volumeσI ≈
S√
N

0
0

1

1

S2 = var(f) =
1

N − 1

N∑

n=1

[f(zn)− E]2

S large poor convergence

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 basic idea:                          is estimated by sampling the volume V=[0,1]d 

with N uniformly distributed random points: E =
1
N

N∑

n=1

f(zn)

I =
∫

V
dz f(z)

Z1

Z2

if 
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Practical Evaluation of the PDF

highly non-uniform, 
especially in the presence 

of resonances

highly non-uniform, especially when 
the resolution associated with a 
reconstructed quantity xi is high:

yi-xi

σexp.

pi

pj

sij=(pi+pj)2

Breit-Wigner distr. in sij

when the dimension of the phase-space is large, this structure 
in “peaks” complicates the numerical evaluation of the weights

 0

 0.04

 0.08

-30 -15  0  15  30

need for an algorithm that is sufficiently fast (large number of 
weights must be evaluated)

P (x, α) ∝
∫

dφy |M |2(y) W (x,y)
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MADWEIGHT

‣ consider the definition of the PDF in 
the Matrix Element Method

‣ solve the problem of evaluating the 
PDF at a specific event in a generic way
by using adaptive and multichannel 
Monte Carlo techniques

P. Artoisenet, V. Lemaitre, F. Maltoni, O. Mattelaer

Thursday 4 October 2012



Monte Carlo integration

1

adaptive MC integration: probe the phase-space volume according to a 

probability density function                                                        (grid)   

that is adapted iteration after iteration                  

integration volume

0
0 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

p(z) = p1(z1)p2(z2) . . . pd(zd)

The grid has a factorized dependence 
in the integration variables

Z2

Z1

Here: adapt the expected density 
of points along the direction Z1 

to resolve the “peak” 

Thursday 4 October 2012



 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.2  0.4  0.6  0.8  1
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Adaptive Monte Carlo integration

z1

z2

variables z1, z2:

the grid cannot be adjusted efficiently to the 
shape of the integrand because the strength of 
the “peak” in the integrand is not controlled by a 
single variable of integration

z1’z2’

the efficiency of the adaptive MC integration depends on the choice of 
variables of integrations

variables z1’, z2’:

the probability density along z1’ (= variable that 
controls the strength of the “peak”) can be 
adapted to probe the integration region where 
the integrand is the largest

z2

z1
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MadWeight

block A

block E

block D

CS B

1

2

11 (ν)

3

4 5

10 (ν)

6 8

7

9

Figure 7: Illustration of the decomposition of the phase-space into blocks for a specific decay
chain.

map the invariant mass of each intermediate particle shown as a dashed line, the angles

of all the visible particles (labeled by an index ranging from 3 to 9) and the energies of

the visibles particles labeled by an index ranging from 3 to 6. Once all these variables

have been generated, the kinematics of each block and the associated phase-space weight

is computed by ordering the blocks backward in time. First the equations that define the

kinematics of blocks A and E are solved, so that the momentum of each leg in these blocks

is defined. Once the kinematics of block E is determined, we can solve the equations that

define the kinematics of block D. Finally, as all the legs in the blocks A, E and D have

definite momenta, we can solve the equations that determine the variables in the CS. The

formulas that are used to fill the kinematics in each block and compute the jacobian factors

are given in the Appendix.

This approach is generalized to the case of an arbitrary decay chain in our code. Any

variable of integration in a phase-space parametrization that can potentially be used in our

code enters into one of the three following categories.

1. The variable controls the strength of a resolution function. If the resolution function

is a δ distribution, the variable is fixed to the value associated with the experimental

event. Otherwise, the grid is adapted such that the variable is generated according

to a probability density that reproduces approximately the shape of the resolution

function.

2. The variable controls the strength of a propagator enhancement. In this case, the

variable can be generated according to a probability density that reproduces exaclty

the shape of the propagator by applying a well-known analytic change of variable.

3. The variable is either the polar or the azimuthal angle of a missing particle. In this

case, the variable is generated according to a uniform distribtion in the interval [0,π]

or [0, 2π] at the first iteration. The grid is adapted at each iteration to approximate

the optimal probability density.

– 17 –

= generator of optimized phase-space mappings            for the evaluation of 
the PDF in the Matrix Element Method

‣The phase-space measure is 
decomposed into “blocks”

‣The phase-space measure 
associated with each block is 
optimized to map the ME + TF 
enhancements

‣momenta are generated 
backward (from the end of the 
decay chain to the interaction 
point)

‣12 blocks are defined in MadWeight  ➪ infinite set of phase-space mappings

‣ the optimal phase-space mappings are generated automatically and combined 
in a multichannel approach 

dφy
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MadWeight

IMPROVEMENTS compared with previous codes:

‣generic code for any decay chain and any 
transfer function (in principle)

‣EXACT phase-space measure          :
reproduction of the phase-space volume 
for a large class of PS parametrizations

‣multichannel techniques for 
overconstrained systems 

dφy

l blocks integrated volume

3 MB A 6.30 × 10−5

3 MB B 6.30 × 10−5

3 MB C 6.30 × 10−5

6 MB D 694 GeV6

4 MB E 0.0166 GeV2

4 MB F 0.0166 GeV2

5 MB B + SB A 3.89 GeV4

4 MB B + SB B 0.0166 GeV2

3 MB B + SB C 6.30 × 10−5

3 MB B + SB D 6.30 × 10−5

4 MB B + SB E 0.0166 GeV2

Table 1: Phase-space volumes
∫

dq1dq2dφn1/(sq1q2) for l massless particles produced in hadron-
hadron collisions at

√
s = 1 TeV. The number l of final-state particles is indicated in the first

column. The second and third columns indicate the structure in blocks defining the phase-space
mapping that is used to calculate the volume with our phase-space generator, and the numerical
value that we obtained. Each number is in agreement with the exact value of the phase-space
volume at three digit accuracy.

The whole procedure that we have presented so far has been implemented in the

MadGraph framework, and the corresponding module has been named MadWeight. For a

given decay chain and a transfer function for the final state objects, the optimized phase-

space mappings are automatically selected, and the resulting multi-channel phase-space

generator is used for the evaluation of the weights. While this procedure applies for virtually

all cases, the speed of convergence of the numerical integration strongly depends on the

process under investigation, and whether the calculation time is a serious limitation or not

has to be assessed on a case-by-case basis.

3.5 Validation of the phase-space generator

One potential issue related to our phase-space mappings optimized for the computation of

the weights is the fact that some of the associated Jacobians develop singularities in specific

phase-space regions. These singular regions are an artefact of the change of variables. In

our case they have a null measure in the integration volume. One can therefore split the

integration volume into a volume V1 where the Jacobian is finite and a volume V2 that

contains the singular region and that can be made arbitrary small compared to the volume

V1. At any given accuracy, we can ignore the contribution from the volume V2 provided

that ε = V2/V1 is sufficiently small. At the numerical level though, one may fear that

instabilities will appear in this procedure.

In practice, we have not encountered any numerical instabilities resulting from a change

of variables that is associated with a specific phase-space block. Any phase-space block and

the related change of variables that have been defined in our procedure have been checked

by reproducing the volume of the entire phase-space region with our phase-space generator

– 17 –
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P (x, α) ∝
∫

dφy |M |2(y) W (x,y)

process

α

matrix
element

|M |2(y)

transfer
function

W (x,y)

phase-space
generator

dφy

exp.
events

weights

:  madgraph

:  madweight

{xi}

Implementation in madgraph5

P (xi, α)
for all i

input

input input

output
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MadWeight: application

let us consider one process presented in the tutorial

and use the matrix element method under realistic conditions

(showering, hadronization, detector effects, ...)

signal
t

t̄

j

µ+

νµ

j

g

b

b̄

W+

W−
g

backgroundj

j

j

j

μ+

e-

e-

νe

νμ
μ+

ϕ1

ϕ1

• Signal vs Background study

• Comparison with pseudo-experimental data.

To begin with let us assume that

MU > M2 > ME > M1 , (6.1)

provides a reasonable mass hierarchy and therefore Φ1 is the LNP. For U we consider three

scenarios, mU = 200, 400, 800 GeV, while we always take M2 = 100 GeV and ME = 50GeV

and M1 = 1 GeV.

Given that U is the only strongly interacting NP particle, this will be the one most

copiously produced at the LHC, via the same subprocesses as top-anti-top are produced:

p p → U U . (6.2)

Exercise 1: Generate the process at LO with MadGraph 5, and determine the cross section

at the LHC 8 TeV for the three benchmark values of the U mass. Optional: generate the

procecess at NLO with MadGraph 5 and find the K-factor for each of the three masses

above. To this aim, use the Tutorial NLO UFO model as provided in the Wiki page.

Next we consider the possible decay chains given the hierarchy of Eq. (6.1):

U → {u, c, t}Φ1 ,

U → {u, c, t}Φ2 , Φ2 → !E , E → !Φ1 ⇒ U → {u, c, t} !+!−Φ1 .
(6.3)

! being a label that includes all flavor, ! = e, µ, τ . Obviously having the U decaying to a

light quark or a top gives very different final state signatures.

Exercise 2: First classify all possible final states in terms of the number of tops, jets

(j = u, c) and charged leptons. Then consider the two possible decay modes for the W in

the top decays, i.e. hadronically or leptonically.

For the sake of simplicity, in the following we will focus on the following simple signa-

tures:

I. pp → (U → jΦ1)(Ū → jΦ1) , i.e., pp → 2 jets + missing ET .

II. pp → (U → tΦ1)(Ū → t̄Φ1) , i.e., pp → tt̄ + missing ET .

III. pp → (U → jΦ1)(Ū → j !+!′−Φ1)+h.c , i.e., pp → !+!−+ 2 jets + missing ET .

IV. pp → (U → j !+!′−Φ1)(Ū → j !+!−Φ1) + h.c , i.e., pp → !+!−!+!−+ 2 jets +

missing ET .

Exercise 3: Pick one of the processes/signatures above, allowing yourself to select a

specific flavor assignment for the final state leptons. Calculate the corresponding rates

with MadGraph at LO. (You can proceed in various ways). Possibly, identify the cross

section corresponding to a simplified detector acceptance.

Exercise 4: Identify the dominant reducible and irreducible SM backgrounds to the signa-

tures above. Generate them with MadGraph, calculate the corresponding rates and order

them in importance. Justify the following choices for the dominant backgrounds:

– 32 –
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MadWeight: application

Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Detector 
Resolution

Probability Density 
Function (PDF)

Discr. variable built 
upon PDF +calibration

Selection 
procedure

detector-level
selected events

hadron-level
event files

n
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m
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e
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ts

discriminant

signal
background?

backgroundt

t̄

j

µ+

νµ

j

g

b

b̄

W+

W−
g

background j

j

e-

νe

νμ
μ+

signalj

j μ+

e-
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ϕ1
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MadWeight: application

Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Detector 
Resolution

Probability Density 
Function (PDF)

Discr. variable built 
upon PDF +calibration

Selection 
procedure

detector-level
selected events

hadron-level
event files

I.generation of events
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MadWeight: application

Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Detector 
Resolution

Probability Density 
Function (PDF)

Discr. variable built 
upon PDF +calibration

Selection 
procedure

detector-level
selected events

hadron-level
event files

II.  evaluation of 
    the weights
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II. evaluation of the weights

using scheme that is fast, reliable, reproducible

load madweight implementation in madgraph 5:➪
bzr branch lp:~maddevelopers/madgraph5/madweight

process

α
matrix

element

|M |2(y)

transfer
function

W (x,y)

phase-space
generator

dφy

weights

{xi}

P (xi, α)
for all i

events
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matrix
element

|M |2(y)

transfer
function

phase-space
generator

dφy W (x,y)

weights

{xi}

P (xi, α)
for all i

events

II. evaluation of the weights

load madweight implementation in madgraph 5:➪
bzr branch lp:~maddevelopers/madgraph5/madweight

process

αα
process

import model Natal_2012_UFO

generate p p > uv uv~ , uv > p1 u ,
( uv~ > p2 u~ , ( p2 > ev mu+ , ev > mu- p1 ))

output madweight signal_hypothesis

output

code for the evaluation of the weights in 
directory signal_hypothesis

proc_card_mg5.datinput :

using scheme that is fast, reliable, reproducible
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II. evaluation of the weights

load madweight implementation in madgraph 5:➪
bzr branch lp:~maddevelopers/madgraph5/madweight

process

α
matrix

element

|M |2(y)

transfer
function

W (x,y)

phase-space
generator

dφy

exp.
events

weights

{xi}

P (xi, α)
for all i

events

{xi}

already generated

lhco event file must be copied at

signal_hypothesis/Events/input.lhco

using scheme that is fast, reliable, reproducible
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II. evaluation of the weights

load madweight implementation in madgraph 5:➪
bzr branch lp:~maddevelopers/madgraph5/madweight

process

α
matrix

element

|M |2(y)

phase-space
generator

dφy

events

input 1:  TF parametrization

Source/MadWeight/transfer_function/TF_my_tf.dat

load TF:

./bin/change_tf.py my_tf

input 2: TF parameters

transfer_card.dat

transfer
function

W (x,y)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

-20 -10  0  10  20  30  40  50

W
(!

)

!=Ep-Ej (GeV)

Ep=60 GeV

Figure 1: Transfer function W (δ) for Ep = 60 GeV, using the parameters associated
with the CMS detector.

2.4 = etaj ! max rap for the jets

2.4 = etab ! max rap for the b

2.5 = etal ! max rap for the charged leptons

0.3 = drjj ! min distance between jets

0.3 = drbb ! min distance between b’s

0.3 = drll ! min distance between leptons

0.3 = drbj ! min distance between b and jet

0.3 = drjl ! min distance between jet and lepton

0.3 = drbl ! min distance between b and lepton

We estimate the b-tag efficiencies from ref. [1]

εb = 0.5, mistag c = 0.07, mistag j = 1.5E − 3. (4)

where j stands for a light jet: g, d, u, s. The parton-level cross sections before b-tagging
and the b-tagging efficiencies for the different background subprocesses are given in Ta-
ble 2. Since the cross section associated with the bbbc category is very small, it is
discarded in this analysis.

Then the energies of the quarks and gluons are then smeared according to one of the
transfer function described in Section 1. A cut E >20 GeV is applied on jet energies
(after smearing). The resulting cut efficiencies are also given in Table 2.

2

in this illustration:
double gaussian param.

using scheme that is fast, reliable, reproducible
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additional inputs:   
MadWeight_card.dat, param_card.dat, run_card.dat

load phase-space generator+ evaluate the weights:
./bin/madweight  6-

II. evaluation of the weights

load madweight implementation in madgraph 5:➪
bzr branch lp:~maddevelopers/madgraph5/madweight

process

matrix
element

|M |2(y)

transfer
function

W (x,y)

phase-space
generator

dφy

weights

{xi}

P (xi, α)
for all i

events

using scheme that is fast, reliable, reproducible
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Result

once all the weights have been evaluated for each event and each 
assumption, they can be combined to analyze the discriminating power: 
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d=P(x|S)/(P(x|S)+P(x|B))

signal sample 
background sample 
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Result

you can reproduce the whole analysis by loading the cards:   

event generations weight evaluation

A.   proc_card_mg5.dat

B.   run_card.dat, param_card.dat

C.  pythia_card.dat

D.  delphes_card.dat, delphes_trigger.dat

E.  selection / MadAnalysis script

A.   proc_card_mg5.dat

B.  TF_my_tf.dat,

     transfer_card.dat

C.  MadWeight_card.dat

D. run_card.dat, param_card.dat

expected time: ~1min / weight
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Figure 8: Expected normalized distribution of events with respect to the discriminant d built upon
(a) the matrix element weight and (b) the pT of the tau for a pure signal sample (solid histogram)
and for a pure background sample (dashed histogram). The errorbars are the distribution associated
with the pseudo-experiment sample, assuming that the statistical error on the number N of events
in a bin is given by

√
N .

Before proceeding further, we stress that while providing an interesting case study, our

example cannot be regarded very realistic. First, the relative cross sections and reconstruc-

tion efficiencies for the signal and the background have been chosen arbitrarily. Second,

this such a light charged Higgs is not favoured by the present constraints, which point to

much higher masses. Finally, the tau lepton reconstruction is idealized as it is considered

here on the same footing as as a muon. A more realistic approach would consist of taking

into account the energy loss from the tau decay with a dedicated transfer function for the

energy of the tau. Nonetheless, as shown below, this example illustrates quite well the

power of the matrix element method.

Let us define PS(x), PB(x) as the weights evaluated for the event final state x under

the signal and the background hypotheses, respectively. These weights can be calculated

from the signal and background full matrix element as defined in Eq. (2.2). Alternatively,

they can be associated with a normalized differential cross section with respect to a single

observable, such as the τ+ transverse momentum

PS,B(x) →
1

σS,B

dσS,B
dpT

[

pT (τ
+)

]

, (4.5)

which also captures the spin effects. The advantage of the weights defined in Eq. (4.5) is

in their simplicity: their evaluation only requires to use a standard phase-space generator

that is optimized for the computation of cross sections. Such an observable, for example,

is very commonly used in the determination of the polarization of the W bosons in top

events and provides us with a useful benchmark to study the increased sensitivity that the

matrix element method might provide.

These weights can then be combined to build an event-by-event discriminating variable

d(x) =
PS(x)

PS(x) + PB(x)
. (4.6)

– 22 –

t

t̄

j

µ+

νµ

j

g

b

b̄

W+

W−
g

Other examples of application

‣ mass determination:

‣ spin determination:

t

t̄

H+

b̄

b

W−

τ+

ντ

ν̄µ

µ−

t

t̄

W+

b̄

b

W−

τ+

ντ

ν̄µ

µ−

background

signal

2.

Rout = 24±9%
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Aspects to investigate when applying MEM 

‣ Evaluation of the weights: convergence of the Monte Carlo integration ?

t

t̄

j

µ+

νµ

j

g

b

b̄

W+

W−
g

t

t̄

µ−
µ+

νµ

ν̄µ

g

b

b̄

W+

W−
g

semi-leptonic channel dileptonic channel

‣ overconstrained system, need to 
combine several PS channels

‣ 12 parton-jet assignements

‣ time spent on one weight:  ~1 hour

‣ if poor resolution on E(jet), exactly 
constrained system, need to consider 
one phase-space channel

‣ 2 parton-jet assignements

‣ time spent on one weight:  ~1min
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Aspects to investigate when applying MEM 

‣ Accuracy of the matrix element weights

Sherpa Collaboration

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

W (x, y)

|M(y)|2

‣The prescription to extract the transfer function is only valid at LO 
in αs  ➪ the PDF has not been defined properly beyond LO accuracy.

‣the omission of higher order corrections can be treated as a 
systematic effect and is expected to lower the discriminant power

(including resolution)
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Aspects to investigate when applying MEM 

‣ Accuracy of the matrix element weights

‣ some prescription can be adopted to improve the model 
for the PDF in the Matrix Element Method, e.g. to take 
into account the dominant effects of ISR

J. Alwall,  A. Freitas, O.  Mattelaer  arXiv:1010.2263

partial implemention in madweight 5
(three different ISR corrections)

X

X

p

p

1
2

p0
pa

pb pin

prad

· · ·

︸

︷︷

︸

1’
2’

p
′

0

p
′

a

p
′

b p
′

in

p
′

rad

· · ·

︸

︷︷

︸

Figure 1: Schematic depiction of the event topology for pair production of heavy particles
X , together with initial-state radiation.

so that as a function of the tk the integrand becomes almost flat across the entire region
−π/2 ≤ tk ≤ π/2 and the integration can be performed numerically without difficulty. The
outputs of the two programs agree very well for all results shown in the following sections.

3 Initial-State Radiation at Parton Level

In this section we restrict ourselves to an analysis at the parton level. Simulated “data”
events have been generated with Pythia 6.4 [5] using CTEQ6L1 parton distribution func-
tions [12]. The momenta of the final-state particles in (5) or (6), as well as those of the
initial-state radiation, have been extracted from the Pythia event record for each event.
No cuts on the parton momenta have been implemented and therefore the acceptance term
in (4) is simply 1. This allows us to single out the effects of ISR without complications from
final-state radiation, hadronization, underlying event and detector efficiencies. For simplicity
and clarity of the discussion, we do not include backgrounds in the analysis.

The first technique that we propose here is based on the observation that the most
significant effect of ISR is on the kinematics of the events; without proper inclusion of ISR
the momentum balance of the decay products is violated. The proper kinematics of the
hard scattering matrix element can be restored by simply boosting the hard event by the
momenta of the ISR. Since the longitudinal incoming momenta are integrated over in the
computation of the likelihood, see eqs. (1) and (3), it is sufficient to perform the boost for
the transverse coordinates only. In practice, instead of boosting the measured final-state
momenta, we perform the boost on the incoming partons of the matrix element, which is
equivalent since the squared matrix element is a Lorentz scalar. With this technique we are
only performing a kinematical boost, which allows us to sum up the ISR momenta for each
incoming leg—the sequence of individual branchings does not play any rôle.

This boost correction is the simplest possible treatment of ISR, which only maintains
the proper momentum balance, while the effects of the particular QCD vertices and internal
propagators (labeled by numbers and pa,b,... in Fig. 1, respectively) are not taken into account.

5
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Aspects to investigate when applying MEM 

‣ Normalization of the weights: left to the user 

See e.g. 

Matrix Element in HEP: Transfer Functions, Efficiencies and 
Likelihood Normalization 
I. Volobouev, arXiv:1101.2259
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Conclusion

MadWeight is designed to conduct Matrix-Element-based likelihood 
analyses in an efficient way (fast, reliable, reproducible)

it is an appropriate tool to test a new idea or conduct a pheno/
experimental analysis in many instances

for more information on how to use it in practice: see the 
madgraph wiki
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Backup slides
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Q:  assuming that the masses m1 and m2 are the only unknown, what 
is the maximum significance that can be achieved in measuring these 
masses at a given luminosity ?

Backup 1: mass reconstruction

pp→ (µ̃+
r → µ+χ̃1)(µ̃−r → µ−χ̃1)

Let us consider a specific example: 

• keeping only information                 
from pT(μ+), M(μ+, μ-)

• matrix element method 
(keeps all information):

possible discriminators: 

P (x|µ̃r, χ̃1) = matrix element weight 

sample of 50 events 
with mµ̃r = 150 GeV

mχ̃1 = 100 GeV

(m2
µ̃r
−m2

χ̃1
)/2mµ̃r = 42 GeV

P (x|µ̃r, χ̃1) = σ−1 dσ

dpTµ
(pTµ|mµ̃r , mχ̃1)× σ−1 dσ

dMµµ
(Mµµ|mµ̃r , mχ̃1)
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• matrix element method 
(keeps all information)

• keeping only information                 
from pT(μ+), M(μ+, μ-)

Let us consider a specific example: 

pp→ (µ̃+
r → µ+χ̃1)(µ̃−r → µ−χ̃1)

Q:  assuming that the masses m1 and m2 are the only unknown, what 
is the maximum significance that can be achieved in measuring these 
masses at a given luminosity ?

sample of 50 events 
with mµ̃r = 150 GeV

mχ̃1 = 100 GeV
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Backup 1: mass reconstruction
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Backup 2: Monte Carlo integration

Std deviation: integration volumeσI ≈
S√
N

0
0

1

1

2. importance sampling:
∫

dz f(z) =
∫

f [P−1(z′)]
p[P−1(z′)]

dz′ =
∫

f(z)
p(z)

p(z)dz

p(z) = Jac[P (z)]z′ = P (z),

if           distributed according to           thenp(z){zn}

E → 1
N

N∑

n=1

f(zn)
p(zn)

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

new integrand
new integr. 
measure

S2 → 1
N − 1

N∑

n=1

[
f(zn)
p(zn)

− E

]2

1. basic idea:                          is estimated by sampling the volume V=[0,1]d 

with N uniformly distributed random points: E =
1
N

N∑

n=1

f(zn)

I =
∫

V
dz f(z)

3. adaptive Monte Carlo integration:

p(z) = p1(z1)p2(z2) . . . pd(zd) (grid)

optimized using an iteration procedureS is decreased if p(z) ≈ f(z)/E
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New phase-space mappings

‣ adaptive MC integration can be used for the computation of the 
weights, as we know where the “peaks” lie:

‣ for a given decay chain and a given transfer function, one needs to 
construct a new parametrization of the phase-space measure

‣ in the MEM analyses at the Tevatron, this problem was solved on a case-
by-case basis

yi-xi

σexp.pi

pj

sij=(pi+pj)2

Breit-Wigner distr. in sij

 0

 0.04

 0.08

-30 -15  0  15  30

Resolution function in yi
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I. generation of the events

Lagrangian
L(p1,p2,...)

hard sc. Matrix 
Elements 

Parton-level
 Events 

Showering/
Hadronization

Detector 
Resolution

Selection 
procedure

detector-level
selected events

hadron-level
event filesfor sake of simplicity,          

I consider here events 
generated at leading-order 
accuracy

A B C

DE
input parameters:

A.   proc_card_mg5.dat

B.   run_card.dat, param_card.dat

C.  pythia_card.dat

feynrules/madgraph madevent pythia

delphesdo-it-yourself

D.  delphes_card.dat, delphes_trigger.dat

E.  c++ code, existing template

fast, reliable, reproducible
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