

A CRASH COURSE

FROM INTEGRATION TO EVENT GENERATION

- Calculations of cross section or decay widths involve integrations over phase space of very complex functions

FROM INTEGRATION TO EVENT GENERATION

- Calculations of cross section or decay widths involve integrations over phase space of very complex functions

$$
\sigma=\frac{1}{2 s} \int|\mathcal{M}|^{2} d \Phi(n)
$$

FROM INTEGRATION TO EVENT GENERATION

- Calculations of cross section or decay widths involve integrations over phase space of very complex functions

$$
\sigma=\frac{1}{2 s} \int|\mathcal{M}|^{2} d \Phi(n)^{\operatorname{Dim}[\Phi(n)] \sim 3 n}
$$

FROM INTEGRATION TO EVENT GENERATION

- Calculations of cross section or decay widths involve integrations over phase space of very complex functions

$$
\sigma=\frac{1}{2 s} \int|\mathcal{M}|^{2} d \Phi(n)^{\operatorname{Dim}[\Phi(n)] \sim 3 n}
$$

General and flexible method is needed

Phase Space

Phase Space

$$
d \Phi_{n}=\left[\Pi_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3}\left(2 E_{i}\right)}\right](2 \pi)^{4} \delta^{(4)}\left(p_{0}-\sum_{i=1}^{n} p_{i}\right)
$$

Phase Space

$$
\begin{aligned}
& d \Phi_{n}=\left[\Pi_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3}\left(2 E_{i}\right)}\right](2 \pi)^{4} \delta^{(4)}\left(p_{0}-\sum_{i=1}^{n} p_{i}\right) \\
& d \Phi_{2}(M)=\frac{1}{8 \pi} \frac{2 p}{M} \frac{d \Omega}{4 \pi}
\end{aligned}
$$

Phase Space

$$
\begin{aligned}
& d \Phi_{n}=\left[\Pi_{i=1}^{n} \frac{d^{3} p_{i}}{(2 \pi)^{3}\left(2 E_{i}\right)}\right](2 \pi)^{4} \delta^{(4)}\left(p_{0}-\sum_{i=1}^{n} p_{i}\right) \\
& d \Phi_{2}(M)=\frac{1}{8 \pi} \frac{2 p}{M} \frac{d \Omega}{4 \pi} \\
& d \Phi_{n}(M)=\frac{1}{2 \pi} \int_{0}^{(M-\mu)^{2}} d \mu^{2} d \Phi_{2}(M) d \Phi_{n-1}(\mu)
\end{aligned}
$$

INTEGRALS AS AVERAGES

INTEGRALS AS AVERAGES

$$
\begin{gathered}
I=\int_{x_{1}}^{x_{2}} f(x) d x \\
V=\left(x_{2}-x_{1}\right) \int_{x_{1}}^{x_{2}}[f(x)]^{2} d x-I^{2} \\
I_{N}=\left(x_{2}-x_{1}\right) \frac{1}{N} \sum_{i=1}^{N} f(x) \\
V_{N}=\left(x_{2}-x_{1}\right)^{2} \frac{1}{N} \sum_{i=1}^{N}[f(x)]^{2}-I_{N}^{2}
\end{gathered}
$$

Integrals as averages

$$
\begin{gathered}
I=\int_{x_{1}}^{x_{2}} f(x) d x \\
V=\left(x_{2}-x_{1}\right) \int_{x_{1}}^{x_{2}}[f(x)]^{2} d x-I^{2} \longmapsto I_{N}=\left(x_{2}-x_{1}\right) \frac{1}{N} \sum_{i=1}^{N} f(x) \\
I=I_{N} \pm \sqrt{V_{N} / N}
\end{gathered}
$$

Integrals as averages

$$
\begin{gathered}
I=\int_{x_{1}}^{x_{2}} f(x) d x \\
V=\left(x_{2}-x_{1}\right) \int_{x_{1}}^{x_{2}}[f(x)]^{2} d x-I^{2} \\
I=I_{N}=\left(x_{2}-x_{1}\right) \frac{1}{N} \sum_{i=1}^{N} f(x) \\
V_{N}=\left(x_{2}-x_{1}\right)^{2} \frac{1}{N} \sum_{i=1}^{N}[f(x)]^{2}-I_{N}^{2} / N
\end{gathered}
$$

Convergence is slow but it can be estimated easily Error does not depend on \# of dimensions! Improvement by minimizing V_{N}. Optimal/Ideal case: $f(x)=C \Rightarrow V_{N}=0$

Importance Sampling

Importance SAmpling

IMPORTANCE SAMPLING

$$
I=\int_{0}^{1} d x \cos \frac{\pi}{2} x
$$

$$
I=\int_{0}^{1} d x\left(1-x^{2}\right) \frac{\cos \frac{\pi}{2} x}{1-x^{2}}
$$

Importance Sampling

$$
I=\int_{0}^{1} d x \cos \frac{\pi}{2} x
$$

$$
\begin{aligned}
I & =\int_{0}^{1} d x\left(1-x^{2}\right) \frac{\cos \frac{\pi}{2} x}{1-x^{2}} \\
& =\int_{\xi_{1}}^{\xi_{2}} d \xi \frac{\cos \frac{\pi}{2} x[\xi]}{1-x[\xi]^{2}}
\end{aligned}
$$

Importance Sampling

$$
I=\int_{0}^{1} d x \cos \frac{\pi}{2} x
$$

$$
\begin{aligned}
I & =\int_{0}^{1} d x\left(1-x^{2}\right) \frac{\cos \frac{\pi}{2} x}{1-x^{2}} \\
& =\int_{\xi_{1}}^{\xi_{2}} d \xi\left(\frac{\cos \frac{\pi}{2} x[\xi]}{1-x[\xi]^{2}}\right)
\end{aligned}
$$

Importance Sampling

$$
I=\int_{0}^{1} d x \cos \frac{\pi}{2} x
$$

$$
\begin{aligned}
I & =\int_{0}^{1} d x\left(1-x^{2}\right) \frac{\cos \frac{\pi}{2} x}{1-x^{2}} \\
& =\int_{\xi_{1}}^{\xi_{2}} d \xi\left(\frac{\cos \frac{\pi}{2} x[\xi]}{1-x[\xi]]^{2}} \Rightarrow \simeq 1\right.
\end{aligned}
$$

Importance Sampling

Importance Sampling

but... you need to know too much about $f(x)$!

IMPORTANCE SAMPLING

but... you need to know too much about $f(x)$!
idea: learn during the run and build a step-function approximation $p(x)$ of $f(x) \quad \searrow V E G A S$

Importance Sampling

but... you need to know too much about $f(x)$!
idea: learn during the run and build a step-function approximation $p(x)$ of $f(x) \quad \square V E G A S$

IMPORTANCE SAMPLING

but... you need to know too much about $f(x)$!
idea: learn during the run and build a step-function approximation $p(x)$ of $f(x) \quad$ VEGAS
 large

IMPORTANCE SAMPLING

but... you need to know too much about $f(x)$!
idea: learn during the run and build a step-function approximation $p(x)$ of $f(x) \quad$ VEGAS

many bins where $f(x)$ is large

Importance Sampling

Importance Sampling

can be generalized to n dimensions:

$$
p(\vec{x})=p(x) \bullet p(y) \bullet p(z) \ldots
$$

IMPORTANCE SAMPLING

can be generalized to n dimensions:

$$
p(\vec{x})=p(x) \bullet p(y) \bullet p(z) \ldots
$$

but the peaks of $f(\vec{x})$ need to be "aligned" to the axis!

Importance Sampling

can be generalized to n dimensions:

$$
p(\vec{x})=p(x) \cdot p(y) \bullet p(z) \ldots
$$

but the peaks of $f(\vec{x})$ need to be "aligned" to the axis!

This is ok...

Importance Sampling

can be generalized to n dimensions:

$$
p(\vec{x})=p(x) \cdot p(y) \bullet p(z) \ldots
$$

but the peaks of $f(\vec{x})$ need to be "aligned" to the axis!

This is not ok...

Importance Sampling

can be generalized to n dimensions:

$$
p(\vec{x})=p(x) \cdot p(y) \cdot p(z) \ldots
$$

but the peaks of $f(\vec{x})$ need to be "aligned" to the axis!

but it is sufficient to make a change of variables!

MULTI-CHANNEL

MULTI-CHANNEL

MULTI-CHANNEL

In this case there is no unique tranformation: Vegas is bound to fail!

MULTI-CHANNEL

In this case there is no unique tranformation:
Vegas is bound to fail!

Solution: use different transformations= channels

$$
p(x)=\sum_{i=1}^{n} \alpha_{i} p_{i}(x) \quad \text { with } \quad \sum_{i=1}^{n} \alpha_{i}=1
$$

with each pi(x) taking care of one "peak" at the time

MULTI-CHANNEL

In this case there is no unique tranformation: Vegas is bound to fail!

MULTI-CHANNEL

In this case there is no unique tranformation:
Vegas is bound to fail!

But if you know where the peaks are (=in which variables) we can use different transformations= channels:

$$
\begin{aligned}
p(x) & =\sum_{i=1}^{n} \alpha_{i} p_{i}(x) \quad \text { with } \quad \sum_{i=1}^{n} \alpha_{i}=1 \\
I & =\int f(x) d x=\sum_{i=1}^{n} \alpha_{i} \int \frac{f(x)}{p(x)} p_{i}(x) d x
\end{aligned}
$$

MULTI-CHANNEL

- Advantages
- The integral does not depend on the α_{i} but the variance does and can be minimised by a careful choice
- Drawbacks
- Need to calculate all gi values for each point
- Each phase space channel must be invertible
- N coupled equations for α_{i} so it might only work for small number of channels

MULTI-CHANNEL

- Advantages
- The integral does not depend on the α_{i} but the variance does and can be minimised by a careful choice
- Drawbacks
- Need to calculate all gi values for each point
- Each phase space channel must be invertible
- N coupled equations for α_{i} so it might only work for small number of channels

Very popular method!

MULTI-CHANNEL BASED ON SINGLE DIAGRAMS

Consider the integration of an amplitude $|\mathrm{M}|^{\wedge} 2$ at treel level which lots of diagrams contribute to. If there were a basis of functions,
such that:

$$
f=\sum_{i=1}^{n} f_{i} \quad \text { with } \quad f_{i} \geq 0, \quad \forall i
$$

I. we know how to integrate each one of them,
2. they describe all possible peaks,
then the problem would be solved:

$$
I=\int d \vec{\Phi} f(\vec{\Phi})=\sum_{i=1}^{n} \int d \vec{\Phi} g_{i}(\vec{\Phi}) \frac{f_{i}(\vec{\Phi})}{g_{i}(\vec{\Phi})}=\sum_{i=1}^{n} I_{i}
$$

MULTI-CHANNEL BASED ON SINGLE DIAGRAMS

Consider the integration of an amplitude $|\mathrm{M}|^{\wedge} 2$ at treel level which lots of diagrams contribute to. If there were a basis of functions,
such that:

$$
f=\sum_{i=1}^{n} f_{i} \quad \text { with } \quad f_{i} \geq 0, \quad \forall i
$$

I. we know how to integrate each one of them,
2. they describe all possible peaks,
then the problem would be solved:

$$
I=\int d \vec{\Phi} f(\vec{\Phi})=\sum_{i=1}^{n} \int d \vec{\Phi} g_{i}(\vec{\Phi}) \frac{f_{i}(\vec{\Phi})}{g_{i}(\vec{\Phi})}=\sum_{i=1}^{n} I_{i}
$$

Does such a basis exist?

MULTI-CHANNEL BASED ON SINGLE DIAGRAMS

Consider the integration of an amplitude $|\mathrm{M}|^{\wedge} 2$ at treel level which lots of diagrams contribute to. If there were a basis of functions,
such that:

$$
f=\sum_{i=1}^{n} f_{i} \quad \text { with } \quad f_{i} \geq 0, \quad \forall i
$$

I. we know how to integrate each one of them,
2. they describe all possible peaks,
then the problem would be solved:

$$
I=\int d \vec{\Phi} f(\vec{\Phi})=\sum_{i=1}^{n} \int d \vec{\Phi} g_{i}(\vec{\Phi}) \frac{f_{i}(\vec{\Phi})}{g_{i}(\vec{\Phi})}=\sum_{i=1}^{n} I_{i}
$$

Does such a basis exist? YES! $\quad f_{i}=\frac{\left|A_{i}\right|^{2}}{\sum_{i}\left|A_{i}\right|^{2}}\left|A_{\text {tot }}\right|^{2}$

MULTI-CHANNEL: MADGRAPH

- Key Idea
- Any single diagram is "easy" to integrate
- Divide integration into pieces, based on diagrams
- Get N independent integrals
- Errors add in quadrature so no extra cost
- No need to calculate "weight" function from other channels.
- Can optimize \# of points for each one independently
- Parallel in nature
- What about interference?
- Never creates "new" peaks, so we're OK!

EXERCISE: TOP DECAY

- Easy but non-trivial
- Breit-Wigner peak $\frac{1}{\left(q^{2}-m_{W}^{2}\right)^{2}+\Gamma_{W}^{2} m_{W}^{2}}$ to be "flattened:
- Choose the right "channel" for the phase space

or

EXERCISE: TOP DECAY

Event Generation

Alternative way

Event Generation

Alternative way

I. pick x

Event Generation

Alternative way
I. pick \times
2. calculate $f(x)$

Event Generation

Alternative way
I. pick x
2. calculate $f(x)$
3. pick $0<y<f m a x$

Event Generation

Alternative way

I. pick x
2. calculate $f(x)$
3. pick $0<y<f m a x$
4. Compare: if $f(x)>y$ accept event,

Event Generation

Alternative way
I. pick x
2. calculate $f(x)$
3. pick $0<y<f m a x$
4. Compare: if $f(x)>y$ accept event, else reject it.

Event Generation

$I=\frac{\text { accepted }}{\text { total tries }}=$ efficiency

Event Generation

What's the difference? before:

same \# of events in areas of phase space with very different probabilities: events must have different weights

Event Generation

What's the difference? before:

\# events is proportional to the probability of areas of phase space:
events have all the same weight ('"unweighted')

Events distributed as in Nature

EVENT GENERATION

Improved

1. pick \times distributed as $p(x)$
2. calculate $f(x)$ and $p(x)$
3. pick $0<y<1$
4. Compare: if $f(x)>y p(x)$ accept event, else reject it.
much better efficiency!!!

Event generation

Event generation

MC integrator

Event generation

Event generation

Acceptance-Rejection

Event generation

$$
\frac{d \sigma}{d \mathcal{O}}
$$

Acceptance-Rejection

Event generator

Event generation

Event generation

This is possible only if $f(x)<\infty$ AND has definite sign!

Monte Carlo Event Generator: DEFINITION

At the most basic level a Monte Carlo event generator is a program which produces particle physics events with the same probability as they occur in nature (virtual collider).

In practice it performs a large number of (sometimes very difficult) integrals and then unweights to give the four momenta of the particles that interact with the detector (simulation).

Note that, at least among theorists, the definition of a "Monte Carlo program" also includes codes which don't provide a fully exclusive information on the final state but only cross sections or distributions at the parton level, even when no unweighting can be performed. I will refer to these kind of codes as "MC integrators".

General structure

subprocs handler

Includes all possible subprocess leading to a given multi-jet final state automatically or manually (done once for all)

$$
\begin{aligned}
& \text { d } \sim \text { d -> aauu } \sim \text { g } \\
& d \sim d->a \operatorname{acc} \sim g \\
& \text { s~s s>atu ung } \\
& \text { s~s s-> acc~g }
\end{aligned}
$$

"Automatically" generates a code to calculate $|\mathrm{M}|^{\wedge} 2$ for arbitrary processes with many partons in the final state.

Most use Feynman diagrams w/ tricks to reduce the factorial growth, others have recursive relations to reduce the complexity to exponential.

General structure

subprocs handler

Includes all possible subprocess leading to a given multi-jet final state automatically or manually (done once for all)

$$
\begin{aligned}
& \text { d } \sim \text { d -> aauu } \sim \text { g } \\
& d \sim d->a \operatorname{acc} \sim g \\
& \text { s~s -> a au u~g } \\
& \text { s~s s-> acc~g }
\end{aligned}
$$

"Automatically" generates a code to calculate $|\mathrm{M}|^{\wedge} 2$ for arbitrary processes with many partons in the final state.

Most use Feynman diagrams w/ tricks to reduce the factorial growth, others have recursive relations to reduce the complexity to exponential.

General structure

