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General idea

Merge aMC@NLO samples for S+0j, S+1j, S+2j, S+...j 
consistently without double counting (where S can be a 
Higgs, a ttbar pair, a W-boson, di-jet, etc.)

Use techniques from CKKW/MLM and multi-scale improved 
fixed order NLO or “MINLO” (Hamilton, Nason & Zanderighi, 2012) 
to define exclusive event samples for S+0j, S+1j, etc.

In such a way that the exclusive samples can simply be 
combined to one big event sample

Special care for the highest multiplicity sample
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A bit more detail
To make a LO prediction exclusive in the number of jets, we need to 
multiply it by a Sudakov damping factor; this is MLM or CKKW:

This gives makes the prediction exclusive at leading logarithmic accuracy

Similarly we can make an NLO prediction exclusive at leading logarithm

We can improve here and use the real-emission matrix elements instead 
of just the Sudakov:
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NLO multi-jet matching

In this document I’ll describe how to perform multi-jet matching at NLO accu-
racy. The general idea is to combine NLO calculations for the same “central”
process, but with various matrix-element-level jet multiplicities, to a single in-
clusive event sample. This event sample should be NLO+LL accurate for any
IR-safe observable for which the corresponding NLO calculation is included. For
example when combining NLO calculation for Higgs+0, 1 and 2 jets, any IR
safe observable that can be made of the Higgs boson, and the 1st and 2nd jet
momenta should be described at NLO+LL accuracy. The way this is going to
get worked-out is by defining exclusive cross sections for a given jet multiplicity.
Those event samples can be added together without any overlap or gaps.

Exclusive cross sections

At LO exclusive cross sections are straight-forward to define. For a process

pp → X + n jets, (1)

where X is the hard process, not containing any jets, we can write (schemati-
cally)

σLO
n, excl = BΘ(Qn −Qcut)∆n(Qcut, Qmax), (2)

where B is the Born cross section for the process pp → X + n partons, each of
them harder than Qcut (forced by the Θ function, in which Qn is the energy
scale of the n-th parton (i.e. the softest)). The Qn can be determined by any
(infrared-safe) procedure that measures the scale of an emission, but is most
naturally defined by applying the kT algorithm and associating Qn with the
differential jet rate of the event, dn,n−1. The ∆ is the no-emission probability
between the scales Qmax and Qcut, i.e. the Sudakov form factor. The subscript
in the Sudakov factor n denotes that this is not a single Sudakov factor but
rather a product of Sudakov factors with different scales determined by the
external and internal light QCD partons in the process: we have to exclude any
other radiation than described by the matrix elements harder than the scale
Qcut. Qmax should be set equal to the hardest scale of the process. In general
this is the maximum between the scale associated with the process X (usually
the invariant mass of X) and the scale associated with the hardest parton.

In practice there are two ways to define the ∆n term, MLM and CKKW. In
the CKKW method, the matrix elements are explicitly multiplied by the factors
∆n. To do this, the partons are clustered using a kT -jet algorithm to define the
’most-likely parton-shower history’ of the event. For each of the skeleton lines
that are created in this way, a Sudakov factor is applied. Originally, these
Sukakov factors are the analytic NLL improved ones, but practice has shown
that using the actual Sudakov factors used in the parton shower (that is used
to shower the events later), works a lot better. After applying the Sudakov
damping, the events can be showered by the parton shower. Given that all
emission above the Qcut scale is already excluded, the parton shower should
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start at the scaleQcut. There is one subtelty here: if the parton shower evolution
parameter does not correspond to the variable Q, a truncated, vetoed parton
shower should be used instead, starting at the scale Qmax, vetoing all emission
above Qcut and truncated at the actual emissions in the matrix elements.

In the MLM method the Sudakov damping, ∆n(Qcut, Qmax), is applied after
parton showering, using Qmax as its starting scale. If the shower emits a parton
at a scale Q which is harder than Qcut the event should be rejected (this is the
madgraph “shower-kT algorithm”). Because, in general, the individual scales of
the emission in the shower are not known and because this only works directly
if the parton evolution scale is identical to the definition of Q, in practice one
lets the shower run all the way down to the shower cut-off Q0 and applies a
parton-jet matching (original Alpgen or MadGraph MLM matching):

• If the number of partons before showering and the number of jets after
showering is not identical: reject the event.

• If the directions of the jets does not correspond with the directions of the
partons: reject the event.

An identical jet algoritm should be used to determine the generation cuts at the
matrix element and the jet defintion after showering. The maximum allowed
distance between the jets and the partons without rejecting the event, is usually
taken to be 1.5 × R0, where R0 is the radius used in the jet definition. Even
though all the emission in the shower about Qcut are rejected, the recoil and
momemtum reshuffeling give the partons small kicks. This means that the cut
in the matrix elements at the generation level should not be taken exactly equal
to Qcut, but a scale small enough, not to leave any gaps after showering.

NLO

The most trivial thing to do when including NLO corrections, is to replace
the Born matrix elements in eq.(2) with an overall NLO factor, similar to the
POWHEG B̄ function,

σNLO
n, excl, LL =

{

B + V +

∫

dΦ1 R

}

Θ(Qn −Qcut)∆n(Qcut, Qmax). (3)

However, the suppression of radiation above Qcut is only correct at leading
logarithmic accuracy via the (product of) Sudakov factors, hence this result is
not correct at NLO order.

We can improve upon this situation by explicitly vetoing hard emissions
in the real-emission matrix elements, and compensating the Sudakov factor at
order O(αs)

σNLO
n, excl =

{

B + V +

∫ Qcut

0
dΦ1 R−B∆(1)

n (Qcut, Qmax)

}

Θ(Qn −Qcut)∆n(Qcut, Qmax), (4)
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Exclusive MC@NLO

Exclusive (in the number of jets) predictions within the 
MC@NLO procedure

That doesn’t look very hard...
                  Why did it took you so long to have this working?
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where ∆(1)
n is the O(αs) contribution to ∆n, i.e. the Leading Logarithmic ap-

proximation of −1
B

∫ Qmax
Qcut

R. As such, this equation gives only the exclusive

cross section integrated over the real emission radiation below Qcut. If Qcut is
not too large, this can be a reasonable description: linking these events (with
Born-like kinematics) to the parton shower with starting scale Qcut will give an
exclusive prediction for an X + n jet event.

On the other hand, we can apply the MC@NLO procedure to improve the
description of the first emission below Qcut by making use of the real emission
matrix elements, i.e. by defining S and H events in the following manner

S-events:

{

B + V −B∆(1)
n (Qcut, Q

B
max) +

∫ Qcut

0
dΦ1 MC

}

Θ(QB
n −Qcut)∆n(Qcut, Q

B
max) (5)

H-events:

{

RΘ(QR
n−Qcut)−MCΘ(QB

n−Qcut)

}

Θ(Qcut−QR
n+1)∆n(Qcut, Q

R
max),

(6)
where, as usual, the S events have X + n-body kinematics and the H events
have X + n+ 1-body kinematics. The superscripts B and R on the variable Q
denote if this scale should be computed using the X + n-body or X + n + 1-
body kinematics, respectively. Given that the explicit Sudakov factors already
veto all parton shower emissions above Qcut, the starting scale for the shower
should be set equal to Qcut, similarly the upper scale in the integral over the MC
counterterms in the S events is given by Qcut. The Θ function effectively sets
the upper integration boundary of the MC counterterms in the H events also to
Qcut as well as vetoing any emissions harden than Qcut using the real-emission
matrix elements.

If we use the parton shower Sudakov damping for the∆n (and Q corresponds
to the parton shower evolution variable), we can combine the 3rd and 4th term

in the S-events to a single contribution, because B∆(1)
n is equal to the MC

counter term (but with opposite sign), giving

S:

{

B + V +

∫ Qmax

0
dΦ1 MC

}

Θ(QB
n −QB

cut)∆n(Q
B
cut, Q

B
max). (7)

Largest-multiplicity event sample

The above considerations only apply to the exclusive event samples. However,
the largest multiplicity event sample should be treated in a slightly different
manner. For definiteness let m be this maximum multiplicity (at the Born
level). The largest-mulitplicity sample should be inclusive in radiation that is
softer than the scale Qm (instead of Qcut) associated to the softest (next-to-
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The devil is in the 
details...

What to choose for the renormalization scale (it does not only enter as 
argument of the strong coupling at NLO)?

What to choose for the factorization scale (it does not only enter in the 
PDFs at NLO)?

What to do for the PDF reweighting (NLO PDF counter terms)?

What to choose for the starting scales of the parton shower?

How to apply the Sudakov suppression (MLM or CKKW)?

How to treat the extra parton in the real-emission? Do we need a Sudakov?

What to do with the matching scale (fixed or a smooth function)?

...
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A lot of “freedom”; we have found 
a way that seems to be working
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Some results: Higgs

Transverse momentum of the Higgs and of the 1st jet. 

Agreement with H+0j at MC@NLO and H+1j at MC@NLO in their respective 
regions of phase-space; Smooth matching in between; Small dependence on 
matching scale

Alpgen shows larger kinks
6
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Figure 3: As in fig. 1, with Sudakov reweighting.

the lower insets of fig. 2). On the one hand, this overestimates the systematics, since the

contributions due to scales close to the end-points of the merging range are less important

(in the effective average performed by the smooth D function) than those at its center. On

the other hand, this is not equivalent to assessing the effect of changing the position and

width of the merging range, which should probably also be done. In any case, these appear

to be pretty minor issues, given that the theoretical systematics associated with merging

cannot be given a precise statistical meaning, and some degree of arbitrariness is always

present.

We now study the effect of the Sudakov reweighting, following the procedure described

in sect. 2.2.3. We start by considering again the N = 1 case, which we generate with a

sharp D function, and the three values µQ = 30, 50, and 70 GeV already employed. In

fig. 3 we plot the same observables as in fig. 1 and 2; a few more jet-related observables are
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Some results: Higgs

Differential jet rates for 1->0 and 2->1
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Figure 4: As in fig. 3, for the pseudorapidity of the hardest jet (upper left), the pseudorapidity
(upper right) and pT (lower left) of the second-hardest jet, and d2 (lower right). In the case of
η(jk), we have imposed a pT (jk)>30 GeV cut.

displayed in figs. 4 and 5. In all these figures, the main frame presents the µQ = 50 GeV

results, our “central” predictions henceforth. The histograms in the lower insets are the

ratios of the Sudakov-reweighted µQ = 30 GeV and 70 GeV results over the central ones

(in other words, there are no merged predictions in these plots that do not include the

Sudakov reweighting). Also shown there are the ratios computed using Alpgen in the

numerator, over the central NLO-merged results.

The comparison of fig. 3 with figs. 1 and 2 shows that the Sudakov reweighting on top

of a sharp D function is as effective as the use of a smooth D function (without Sudakov

reweighting) in removing the kinks. There are quite small residual wiggles11, which may be

11These can be eliminated with a smooth D function (plus Sudakov reweighting). We did not test this
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Some results: Higgs

Differential jet rates

Matching up to 2 jets at NLO

Results very much consistent with matching up to 1 jet at NLO
8
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Figure 6: As in fig. 3, with N = 2.

to disappear, and the merging-parameter dependence reduced, when pcut
T

becomes large.

We finally turn to discussing the case of the N = 2, sharp-D function, Sudakov-

reweighted merging; that is, we increase the largest multiplicity by one unit w.r.t. what

was done before. The settings are the same as in the N = 1 case, and figs. 6, 7, and 8 are

the analogues of figs. 3, 4, and 5 respectively (with the exception of one panel in fig. 8).

The numerators of the ratios that appear in the upper insets are the same as before for

the H + 0j and H + 1j cases; that for H + 2j is obviously specific to N = 2. In the lower

insets, together with the ratios that allow one to assess the merging systematics, we have

plotted (as histograms overlaid with open circles) the ratios of the N = 1 results over the

N = 2 ones, both for µQ = 50 GeV. We have also recomputed the Alpgen predictions, by

adding the H + 3 parton sample, for consistency with N = 2. The corresponding results

will not be shown in the plots, since these are already quite busy, and there is no difference
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Figure 7: As in fig. 4, with N = 2.

at all in the patterns discussed above, except in a very few cases which we shall comment

upon when appropriate.

The common feature of all but one of the observables presented in figs. 6–8 is that

they are extremely close, in both shape and normalization, to their N = 1 counterparts

of figs. 3–5. This is highly non-trivial, since the individual i-parton contributions are

different in the two cases. The exception is the pseudorapidity of the second-hardest jet

(upper right panel of fig. 7), which the inclusion of the 2-parton sample turns into a more

central distribution, as anticipated in the discussion relevant to fig. 4, and brings it very

close to the Alpgen result obtained with the same µQ.

The small impact of the increase of the largest multiplicity is also generally in agree-

ment with what is found in Alpgen, where the inclusion of the H +3 parton contribution

changes the fully-inclusive rate by +0.3%. The effects on differential observables are also
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Some results:
W-boson

Similar results for W-boson production
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Figure 9: e+νe production, with N = 1, sharp D function, and Sudakov reweighting. Pair pT

(upper left), hardest-jet pT (upper right), d1 (lower left), and d2 (lower right) are shown.

In fig. 11 we show the rapidity difference between the lepton pair and the hardest jet,

for four different pT cuts on the latter. This is in fully analogy with the case of fig. 5, and

it is immediate to see that the general discussion given there applies to e+νe production as

well. In particular, the pattern of the presence or absence of the dip is exactly the same,

while the specific behaviour at a given pcut
T

is different because of the differences between

the two processes (i.e., mW vsmH and qq̄ vs gg). We also point out that fig. 11 can be quite

directly compared with figs. 5 and 6 of ref. [81], where the same observable is computed

with standalone MC@NLO matched with Q2-ordered Pythia6; this underlines again the

MC-dependence of these distributions for small pcut
T

.

– 30 –

Figure 9: e+νe production, with N = 1, sharp D function, and Sudakov reweighting. Pair pT

(upper left), hardest-jet pT (upper right), d1 (lower left), and d2 (lower right) are shown.

In fig. 11 we show the rapidity difference between the lepton pair and the hardest jet,

for four different pT cuts on the latter. This is in fully analogy with the case of fig. 5, and

it is immediate to see that the general discussion given there applies to e+νe production as

well. In particular, the pattern of the presence or absence of the dip is exactly the same,

while the specific behaviour at a given pcut
T

is different because of the differences between

the two processes (i.e., mW vsmH and qq̄ vs gg). We also point out that fig. 11 can be quite

directly compared with figs. 5 and 6 of ref. [81], where the same observable is computed

with standalone MC@NLO matched with Q2-ordered Pythia6; this underlines again the

MC-dependence of these distributions for small pcut
T

.

– 30 –



Rikkert Frederix, University of Zurich

Some results: ttbar

and top pair production

Only for VERY large scales tt+1j at MC@NLO is larger than 
than tt+0j at MC@NLO
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Figure 12: tt̄ production, with N = 1, sharp D function, and Sudakov reweighting. Pair pT (upper
left), hardest-jet pT (upper right), d1 (lower left), and d2 (lower right) are shown.

However, there are a few specific features that are worth stressing. Firstly, the merging

systematics is greater than previously observed. In part, this is due to the very large

range of matching scales adopted here, but it is also related to the dynamics of the present

process. Namely, up to quite large pT values (one can use the pair transverse momentum

to be definite) the standalone MC@NLO tt̄+ 0j result is larger in absolute normalization

than the tt̄+1j one; this is the combined effect of the fact that the shower easily produces

hard radiation (as a consequence of the top mass driving the setting of the shower scale to

relatively large values), and of the large K factor in the tt̄ + 0j NLO computation. This

feature is easily seen e.g. in the upper inset of the upper-left panel of fig. 12 – the relative

difference between the dashed blue and dotted red histograms is about 30% for pT (tt̄) ≥
100 GeV. Secondly, there is a good agreement between Alpgen, and the merged-NLO
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What still needs to 
be done

Automation: so far, applying the Sudakov factors was done in a non-
automatic way

Can we take the CKKW/MLM cluster.f and reweight.f that is already 
there for the LO and port it to the NLO code?

Discussion with Johan already started

Some difficulties, because at NLO there are also the real-emission 
matrix elements that are clustered in a different way (in the real-
emission one step needs to be skipped; not all information is readily 
available)

Processes with jets at the lowest multiplicity Born (e.g. t-channel single 
top): is there anything special needed?
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Physics applications

Most interesting right now might be Higgs production by VBF and 
VBF+1j, to be able to study in detail the uncertainties in the central jet 
veto:

how well are they modeled at LO and

what are the uncertainties coming from the matching

Extension to include b quarks (Wbb and Wbb+1j)

Higgs production by gluon fusion and NLO spin correlations (spin-2 
Higgs)

And many, many more...
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