Tracking Detector Development for the International Linear Collider

CP3 SEMINAR
PAUL MALEK

14 MAY 2024

Introduction to ILC

Overview of ILD

TPC Development for ILD

14.05.2024

Future e⁺e⁻ Colliders

- discovery of 125 GeV Higgs boson by ATLAS & CMS in 2021
- consensus for "Higgs Factory" as next big project in particle physics
 - LHC cannot fully determine Higgs properties
 - Higgs boson as window into BSM physics
- several concepts
 - circular: FCC-ee, CEPC
 - linear: CLIC, ILC
- e^+e^- collider with $E_{cm} \ge 250$ GeV • Higgs-strahlung peak ($e^+e^- \rightarrow ZH$)
- further energy POIs:
 - $t\bar{t}$ threshold (350 GeV)
 - *t̄tH / ZHH* (≥ 500 GeV)

Future *e*⁺*e*⁻ Colliders

- discovery of 125 GeV Higgs boson by ATLAS & CMS in 2021
- consensus for "Higgs Factory" as next big project in particle physics
 - LHC cannot fully determine Higgs properties
 - Higgs boson as window into BSM physics
- several concepts
 - circular: FCC-ee, CEPC
 - linear: CLIC, ILC
- e^+e^- collider with $E_{cm} \ge 250 \text{ GeV}$
 - Higgs-strahlung peak ($e^+e^- \rightarrow ZH$)
- further energy POIs:
 - tt threshold (350 GeV)
 - *t̄H* / *ZHH* (≥ 500 GeV)

The International Linear Collider

- accelerator design result of ~20y of R&D
- candidate site in the Kitakami area, Japan
 suitable for up to 50 km tunnel
- 20 km baseline design with E_{CM} = 250 GeV
 o upgradable to 500 GeV (30 km)
- accelerator based on 1.3 GHz SCRF cavities
 - design gradient: 31.5 MV/m 35 MV/m
 - proven technology: E-XFEL, LCLS-II
- design luminosity of 1.35 × 10³⁴ cm⁻²s⁻¹
 o double with luminosity upgrade
- 1312 (2625) bunches in ~1 ms long pulses
 5 Hz repetition rate
- 80% electron polarisation, (30% positrons)
- 2 detectors in "push-pull" configuration

The International Linear Collider

- accelerator design result of ~20y of R&D
- candidate site in the Kitakami area, Japan
 suitable for up to 50 km tunnel
- 20 km baseline design with E_{CM} = 250 GeV
 o upgradable to 500 GeV (30 km)
- accelerator based on 1.3 GHz SCRF cavities
 - design gradient: 31.5 MV/m 35 MV/m
 - proven technology: E-XFEL, LCLS-II
- design luminosity of 1.35 × 10³⁴ cm⁻²s⁻¹
 o double with luminosity upgrade
- 1312 (2625) bunches in ~1 ms long pulses
 5 Hz repetition rate
- 80% electron polarisation, (30% positrons)
- 2 detectors in "push-pull" configuration

Physics at the ILC

at 250 GeV (2 ab⁻¹):

- improve Higgs mass precision to 14 MeV
 recoil-mass technique
- directly measure total width of the Higgs
- measure Higgs couplings to < 1%
 - gauge bosons, 3rd gen. fermions
 - BSM deviations expected at ~5%
- limit invisible Higgs decay width to < 0.16%
- measurement of m_w to 2.5 MeV
- triple gauge couplings to O(10⁻³)
- at higher energies:
- Higgs self coupling to < 30%
- top quark mass to 20 MeV

Physics at the ILC

at 250 GeV (2 ab⁻¹):

- improve Higgs mass precision to 14 MeV
 recoil-mass technique
- directly measure total width of the Higgs
- measure Higgs couplings to < 1%
 gauge bosons, 3rd gen. fermions
 - BSM deviations expected at ~5%
- limit invisible Higgs decay width to < 0.16%
- measurement of m_w to 2.5 MeV
- triple gauge couplings to O(10⁻³)
- at higher energies:
- Higgs self coupling to < 30%
- top quark mass to 20 MeV

The International Large Detector

- general-purpose 4π particle detector for ILC
- detector specifications driven by physics requirements
 - Higgs recoil mass → momentum resolution

•
$$\Delta(1/p_{\tau}) = \frac{\Delta p_{\tau}}{p_{\tau}^2} \le 2 \cdot 10^{-5} \text{GeV}^{-1} \oplus \frac{10^{-3}}{p_{\tau} \sin \theta}$$

• Higgs BR to $b/c/\tau \rightarrow$ vertex resolution

•
$$\sigma_{d_o} \leq 5 \mu m \oplus \frac{10 \, \mu m}{\left(\, \rho / \, \text{GeV} \right) \left(\sin \theta \right)^{3/2}}$$

- W/Z dijet mass separation \rightarrow jet energy resolution
 - $\Delta E/E \approx 3\%$ for $E \ge 100$ GeV

ightarrow optimized for particle flow

- highly granular calorimeters inside a 3.5 T solenoid
- highly efficient tracking system: TPC + silicon
 - > 99% efficiency for p_T > 250 MeV
- minimal material in inner detector
 - barrel: ~0.1 X₀; endcaps: ~0.5 X₀

The International Large Detector

- general-purpose 4π particle detector for ILC
- detector specifications driven by physics requirements
 - $^{\circ}$ Higgs recoil mass \rightarrow momentum resolution

•
$$\Delta(1/p_{\tau}) = \frac{\Delta p_{\tau}}{p_{\tau}^2} \le 2 \cdot 10^{-5} \text{GeV}^{-1} \oplus \frac{10^{-3}}{p_{\tau} \sin \theta}$$

• Higgs BR to $b/c/\tau \rightarrow$ vertex resolution

•
$$\sigma_{d_{\circ}} \leq 5 \mu m \oplus \frac{10 \mu m}{(p/\text{GeV})(\sin \theta)^{3/2}} \leq CMS/2 | ALEPH/2$$

- W/Z dijet mass separation \rightarrow jet energy resolution
 - $\Delta E/E \approx 3\%$ for $E \ge 100$ GeV \approx CMS/3

ightarrow optimized for particle flow

- highly granular calorimeters inside a 3.5 T solenoid
- highly efficient tracking system: TPC + silicon
 - > 99% efficiency for p_T > 250 MeV
- minimal material in inner detector
 - barrel: ~0.1 X₀; endcaps: ~0.5 X₀ ≈ CMS/2

Particle Flow

- precision of jet energy measurement limited by HCAL resolution
- combine information from all subdetectors to improve jet energy resolution
 - 65% charged particles \rightarrow tracker momentum
 - 25% photons \rightarrow ECAL energy measurement
 - $\Delta E/E \leq 20\%/\sqrt{E/\text{GeV}}$
 - 10% neutral hadrons \rightarrow HCAL energy
 - $\Delta E/E \geq 50 \% / \sqrt{E/\text{GeV}}$
- separate individual particle contributions & match tracks and calorimeter showers
 → major driver for calorimeter & tracker design
 - e.g. tungsten ECAL: large ratio λ/X_0
- precision limited by wrong shower separation
 → "confusion"
 - more prevalent at higher energies

Particle Flow

- precision of jet energy measurement limited by HCAL resolution
- combine information from all subdetectors to improve jet energy resolution
 - 65% charged particles \rightarrow tracker momentum
 - 25% photons \rightarrow ECAL energy measurement
 - $\Delta E/E \leq 20\%/\sqrt{E/GeV}$
 - 10% neutral hadrons \rightarrow HCAL energy
 - $\Delta E/E \geq 50 \% / \sqrt{E/\text{GeV}}$
- separate individual particle contributions & match tracks and calorimeter showers
 → major driver for calorimeter & tracker design
 - e.g. tungsten ECAL: large ratio λ/X_0
- precision limited by wrong shower separation
 → "confusion"
 - more prevalent at higher energies

Particle Flow

- precision of jet energy measurement limited by HCAL resolution
- combine information from all subdetectors to improve jet energy resolution
 - 65% charged particles \rightarrow tracker momentum
 - 25% photons \rightarrow ECAL energy measurement
 - $\Delta E/E \leq 20\%/\sqrt{E/\text{GeV}}$
 - 10% neutral hadrons \rightarrow HCAL energy
 - $\Delta E/E \geq 50 \% / \sqrt{E/\text{GeV}}$
- separate individual particle contributions & match tracks and calorimeter showers
 major driver for calorimeter & tracker design
 - → major driver for calorimeter & tracker design
 - + e.g. tungsten ECAL: large ratio λ/X_0
- precision limited by wrong shower separation
 → "confusion"
 - more prevalent at higher energies

The International Large Detector

- general-purpose 4π particle detector for ILC
- detector specifications driven by physics requirements
 - $^{\circ}$ Higgs recoil mass \rightarrow momentum resolution

•
$$\Delta(1/p_{\tau}) = \frac{\Delta p_{\tau}}{p_{\tau}^2} \le 2 \cdot 10^{-5} \text{GeV}^{-1} \oplus \frac{10^{-3}}{p_{\tau} \sin \theta}$$

• Higgs BR to $b/c/\tau \rightarrow$ vertex resolution

*
$$\sigma_{d_{\circ}} \leq 5 \mu \mathrm{m} \oplus \frac{10 \, \mu \mathrm{m}}{\left(p/\mathrm{GeV} \right) \left(\sin \theta \right)^{3/2}} \leq \mathrm{CMS/2} \mid \mathrm{ALEPH/2}$$

• W/Z dijet mass separation \rightarrow jet energy resolution

•
$$\Delta E/E \approx 3\%$$
 for $E \ge 100$ GeV \approx CMS/3

- ightarrow optimized for particle flow
 - highly granular calorimeters inside a 3.5 T solenoid
 - highly efficient tracking system: TPC + silicon
 - > 99% efficiency for p_T > 250 MeV
 - minimal material in inner detector
 - barrel: ~0.1 X₀; endcaps: ~0.5 X₀ ≈ CMS/2

ILD Event Display

ILD Sub-detectors

- vertex detector: 3 double-layers silicon pixel sensors $\overline{\underline{E}}_{40}^{50}$
 - material $\leq 0.15\% X_0$ per layer
 - spatial resolution = 3 μm
- inner silicon tracker: 2 double layers pixel sensors spatial resolution = 5 μm
- forward tracker: 2 pixel + 5 stereo strip layers ° extends tracking coverage to $\theta = 4.8^{\circ}$
- Time Projection Chamber
- outer silicon layer: 1 stereo layer strip sensors transverse resolution = 7 μm
 - considered as timing layer for TOF (10 ps)
- ECAL: 30 layers tungsten + silicon / scintillator ° depth of 24 X₀ / 0.85 λ
 - 5 mm cell size
- HCAL: 48 layers steel + scintillator / RPC ° depth of 6λ
 - 3 cm / 1cm cell size

ILD Sub-detectors

- vertex detector: 3 double-layers silicon pixel sensors
 - material $\leq 0.15\% X_0$ per layer
 - spatial resolution = 3 μm
- inner silicon tracker: 2 double layers pixel sensor
 spatial resolution = 5 μm
- forward tracker: 2 pixel + 5 stereo strip layers
 extends tracking coverage to θ = 4.8°
- Time Projection Chamber
- outer silicon layer: 1 stereo layer strip sensors
 transverse resolution = 7 μm
 - considered as timing layer for TOF (10 ps)
- ECAL: 30 layers tungsten + silicon / scintillator $^{\circ}$ depth of 24 X_{0} / 0.85 λ
 - 5 mm cell size
- HCAL: 48 layers steel + scintillator / RPC $^{\circ}$ depth of 6 λ
 - 3 cm / 1cm cell size

The ILD Time Projection Chamber

- field cage ~5% X₀; end caps < 25% X₀ \approx ALICE
- TPC standalone resolution requirement • $\Delta p_{\tau}/p_{\tau} \leq 10^{-4}(p_{\tau}/\text{GeV}) \Rightarrow \sigma_{r\varphi} \leq 100 \mu \text{m}$ $\approx \text{ALEPH}/12 \approx \text{ALEPH}/2$
- gas amplification by MPGD:
 - GEM or MicroMEGAS
 - small readout electrodes: ~1 mm × 6 mm
 - alternative: GridPix (55 μm pixels)
- 220 samples per track for 35 cm < r < 170 cm
 - high redundancy / efficiency
 - excellent pattern recognition capabilities
 - \mapsto matching of tracks and calorimeter clusters
- specific energy loss measurement for PID
 o expected dE/dx resolution: ~5% ≈ ALEPH | ALICE

The ILD Time Projection Chamber

- field cage ~5% X₀; end caps < 25% X₀ \approx ALICE • TPC standalone resolution requirement • $\Delta p_{\tau}/p_{\tau} \leq 10^{-4}(p_{\tau}/\text{GeV}) \Rightarrow \sigma_{r\varphi} \leq 100 \mu \text{m}$ $\approx \text{ALEPH}/12 \qquad \approx \text{ALEPH}/2$
- gas amplification by MPGD:
 GEM or MicroMEGAS
 - small readout electrodes: ~1 mm × 6 mm
 - alternative: GridPix (55 μm pixels)
- 220 samples per track for 35 cm < r < 170 cm
 high redundancy / efficiency
 - excellent pattern recognition capabilities
 - → matching of tracks and calorimeter clusters
- specific energy loss measurement for PID
 o expected dE/dx resolution: ~5% ≈ ALEPH | ALICE

Time Projection Chambers

- gas filled volume with (homogeneous) electric field
- fast charged incident particles ionise gas long their path
 electric field separates electron-ion pairs
- electrons drift to the anode
 - magnetic field parallel to electric field reduces diffusion
- track "image" is projected onto segmented readout
 avalanche gas amplification required
- 3rd coordinate reconstructed from arrival time and drift velocity

Gas Electron Multipliers

- insulating foil coated with copper on both sides
 - holes allow transfer of electrons
- high voltage between electrodes creates strong field in holes (> 10 kV/cm)
 - ightarrow avalanche gas amplification
- external fields influence GEM transparency for electrons and ions
 - field dependency for electrons and ions generally inverted
 - ightarrow fields can be tuned to absorb ions
 - \rightarrow reduces space charge induced field distortions

Gas Electron Multipliers

- insulating foil coated with copper on both sides
 - holes allow transfer of electrons
- high voltage between electrodes creates strong field in holes (> 10 kV/cm)
 - ightarrow avalanche gas amplification
- external fields influence GEM transparency for electrons and ions
 - field dependency for electrons and ions generally inverted
 - ightarrow fields can be tuned to absorb ions
 - \rightarrow reduces space charge induced field distortions

x - Position / µm

Gas Electron Multipliers

- insulating foil coated with copper on both sides
 - holes allow transfer of electrons
- high voltage between electrodes creates strong field in holes (> 10 kV/cm)
 - ightarrow avalanche gas amplification
- external fields influence GEM transparency for electrons and ions
 - field dependency for electrons and ions generally inverted
 - ightarrow fields can be tuned to absorb ions
 - \rightarrow reduces space charge induced field distortions

x - Position / µm

- aluminium back frame
 - provides rigidity & mounting points
- passive readout board w/ segmented anode
 28 rows, 4828 pads
- stack of 3 GEMs
 - mounted on thin ceramic frames
 - ~95% active area

- aluminium back frame
 - provides rigidity & mounting points
- passive readout board w/ segmented anode
 28 rows, 4828 pads
- stack of 3 GEMs
 - mounted on thin ceramic frames
 - ~95% active area

- aluminium back frame
 - provides rigidity & mounting points
- passive readout board w/ segmented anode
 28 rows, 4828 pads
- stack of 3 GEMs
 - mounted on thin ceramic frames
 - ~95% active area

- aluminium back frame
 - provides rigidity & mounting points
- passive readout board w/ segmented anode
 28 rows, 4828 pads
- stack of 3 GEMs
 - mounted on thin ceramic frames
 - ~95% active area

The Importance of Flat GEMs

 GEM deflections affect field homogeneity 	cathode ——					0-015
 drift field distortions introduce E×B effects can deteriorate spatial resolution 		90 V/cm	transfer field	95 V/cm	85 V/cm	THESIS-201
 inter-GEM fields influence GEM 	CEMI					ESY-
transparency for electrons	GEMT	$1.5 \mathrm{kV/cm}$	transfer field	1.3kV/cm	1.8kV/cm	DI/
 non-uniformity introduces variations of effective gain 	GEM II GEM III	1.5 kV/cm	transfer field	1.5kV/cm	1.4 kV/cm	204
		3.0 kV/cm	induction field	3.1 kV/cm	3.2 kV/cm	0.3
→ minimise deflection to not affect momentum & dE/dx measuremen	anode —					doi: 1

The Importance of Flat GEMs

The Importance of Flat GEMs

- GEM deflections affect field homogeneity
- drift field distortions introduce E×B effects
 - ° can deteriorate spatial resolution
- inter-GEM fields influence GEM transparency for electrons
- non-uniformity introduces variations of effective gain
- → minimise deflection to not affect momentum & dE/dx measurement

A new GEM Mounting Tool

- typically GEMs are mounted under strong tension \rightarrow not possible due to thin frames
- mounting without pre-tension → deflections of GEM foils larger than tolerable
 inherent to design or mounting process?
- developed & commissioned special mounting tool
- measure GEM flatness to compare old and new process

Flatness Measurement Setup

Example Measurements

GEM Flatness Comparison

- measurement setup: xyz-stage & laser displacement sensor
- sample size:
 - old process: 5 GEMs
 - tool assisted: 7 GEMs
- tool reduces deflections by factor 3
- location of largest deflections
 manual: centre of frame cells
 - ° tool assisted: close to the frame
 - ightarrow flatness now limited by frames

Testbeam Measurement

- measurements to test new modules
 - ° extensive validation of previous results
 - spatial resolution
 - signal shape
 - environmental / systemic effects
 - ^o new measurement: dE/dx resolution
- DESY II Test Beam: 5 GeV electrons
- 1 T solenoid magnet PCMag
- large TPC prototype (LPTPC)
- measurements cover full sensitive volume

Testbeam Measurement

- measurements to test new modules
 - ° extensive validation of previous results
 - spatial resolution
 - signal shape
 - environmental / systemic effects
 - ^o new measurement: dE/dx resolution
- DESY II Test Beam: 5 GeV electrons
- 1 T solenoid magnet PCMag
- large TPC prototype (LPTPC)
- measurements cover full sensitive volume

Data Reconstruction

- readout based on ALTRO chip
 - 10 bit ADC
 - 20 MHz sampling rate
- pulse finding looks for charge peaks in each channel
 - configurable threshold parameters
- hit finding combines neighboring pulses based on charge
 - position calculated from charge-weighted mean
- track finding using Hough transformation
- track fitting using GBL

Signal Shape Measurements

- charge distribution on readout
 - gives information on shape of electron cloud
 - informs parameters for pulse & hit finding
- transverse: pad-response function (PRF)
 - convolution of pad pitch & charge cloud width
 - used to determine transverse diffusion
 - $\sigma_{PRF} = \sqrt{(\sigma_{PRF,0})^2 + (D_t)^2 \cdot z}$
- longitudinal: signal rise time
 related to length of charge cloud
- both indicate smaller size for new modules
 - → consistent with smaller distortions due to flatter GEMs
 - excluded other effects:
 - gas composition & contamination
 - environmental & system effects

PAUL MALEK | CP3 SEMINAR

Signal Shape Measurements

- charge distribution on readout
 - gives information on shape of electron cloud
 - informs parameters for pulse & hit finding
- transverse: pad-response function (PRF)
 - convolution of pad pitch & charge cloud width
 - used to determine transverse diffusion
 - $\sigma_{PRF} = \sqrt{(\sigma_{PRF,0})^2 + (D_t)^2 \cdot z}$
- longitudinal: signal rise time
 related to longth of charge clo
 - related to length of charge cloud
- both indicate smaller size for new modules
 - → consistent with smaller distortions due to flatter GEMs
 - excluded other effects:
 - gas composition & contamination
 - environmental & system effects

Signal Shape Measurements

- charge distribution on readout
 - gives information on shape of electron cloud
 - informs parameters for pulse & hit finding
- transverse: pad-response function (PRF)
 - convolution of pad pitch & charge cloud width
 - used to determine transverse diffusion
 - $\sigma_{PRF} = \sqrt{(\sigma_{PRF,0})^2 + (D_t)^2 \cdot z}$
- longitudinal: signal rise time
 - related to length of charge cloud
- both indicate smaller size for new modules
 - → consistent with smaller distortions due to flatter GEMs
 - excluded other effects:
 - gas composition & contamination
 - environmental & system effects

Spatial Resolution Measurement

- spatial resolution determined from distribution of track residuals
- depends on drift distance z

•
$$\sigma_{r\varphi} = \sqrt{(\sigma_{r\varphi,0})^2 + \frac{(D_t)^2}{N_{\text{eff}} \cdot e^{-Az}} \cdot z}$$

- deteriorates due to diffusion
- electron attachment to oxygen contamination
- diffusion coefficient from PRF measurement used as input for fit
- fit result can be used to extrapolate to ILD
 higher magnetic field → lower diffusion
 - no significant attachment expected
- 100 μm resolution at full drift can be reached

Spatial Resolution Measurement

- spatial resolution determined from distribution of track residuals
- depends on drift distance z

•
$$\sigma_{r\varphi} = \sqrt{(\sigma_{r\varphi,0})^2 + \frac{(D_t)^2}{N_{\text{eff}} \cdot e^{-Az}} \cdot z}$$

- deteriorates due to diffusion
- electron attachment to oxygen contamination
- diffusion coefficient from PRF measurement used as input for fit
- fit result can be used to extrapolate to ILD
 higher magnetic field → lower diffusion
 - no significant attachment expected
- 100 μm resolution at full drift can be reached

Determining the dE/dx Resolution

- measure Q/Δx for each hit
 energy loss ΔE∝Q
- apply charge calibration
- Landau tail affects average Q

• best estimator:

- \rightarrow 75 % truncated mean
- resolution from RMS of distribution

- resolution is constant
 - \rightarrow average over several runs
- relative resolution: ~9%
 - for 56 valid hits per track

Determining the dE/dx Resolution

- measure Q/Δx for each hit
 energy loss ΔE∝Q
- apply charge calibration
- Landau tail affects average Q

• best estimator:

- \rightarrow 75 % truncated mean
- resolution from RMS of distribution

- resolution is constant
 - \rightarrow average over several runs
- relative resolution: ~9%
 - for 56 valid hits per track

Determining the dE/dx Resolution

- measure Q/Δx for each hit
 energy loss ΔE∝Q
- apply charge calibration
- Landau tail affects average Q

• best estimator:

- \rightarrow 75 % truncated mean
- resolution from RMS of distribution

- resolution is constant
 - \rightarrow average over several runs
- relative resolution: ~9%
 - ^o for 56 valid hits per track

Extrapolation to ILD

- extrapolate from LPTPC to ILD TPC
 56 hits to 220 hits
- dE/dx resolution scales with number of hits • power law $\sigma_0 \cdot N^{-k}$, k < 0.5
- idea: combine hits from multiple tracks
 → pseudo tracks of arbitrary length
- power law fit finds k = 0.48
- resolution at 220 hits: 4.8%
- fulfills ILD goal of 5 %

Summary

• the ILC is a mature project with an extensive physics case

- the ILD concept is able to provide the required measurement precision
 supported by detailed simulations & prototype tests
- the GEM + pad based TPC readout fulfills the requirements of the ILD TPC

Backup

14.05.2024

Why e⁺e⁻?

- cleanliness:
 - no pileup
 - no underlying event
- cross-section "democracy"
 - Higgs cross-section ~1% of total
 - typical BSM cross-sections: ~0.1% 1% of total
- know / fully reconstructible initial / final state
 well defined centre-of-mass energy
- no QCD corrections to cross-section calculations

- ightarrow more benign radiation environment
 - allows to optimise detector performance
- \rightarrow no trigger necessary
 - ° all events can be analysed
 - rare processes & unusual signatures detectable
- \rightarrow reduces required model assumptions
- ightarrow allows study of spin dependence
- \rightarrow much more precise theory predictions
 - indirect searches for new physics to O(10 TeV)

ILC Specifications

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade	Z pole	U_{l}	pgrades	
Centre of mass energy	\sqrt{s}	${\rm GeV}$	250	250	91.2	500	250	1000
Luminosity	$\mathcal{L} = 10^{34}$	${\rm cm}^{-2}{\rm s}^{-1}$	1.35	2.7	0.21/0.41	1.8/3.6	5.4	5.1
Polarization for e^-/e^+	$P_{-}(P_{+})$	%	80(30)	80(30)	80(30)	80(30)	80(30)	80(20)
Repetition frequency	$f_{ m rep}$	Hz	5	5	3.7	5	10	4
Bunches per pulse	$n_{\rm bunch}$	1	1312	2625	1312/2625	1312/2625	2625	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	2	2	1.74
Linac bunch interval	$\Delta t_{\rm b}$	\mathbf{ns}	554	366	554/366	554/366	366	366
Beam current in pulse	$I_{\rm pulse}$	mA	5.8	8.8	5.8/8.8	5.8/8.8	8.8	7.6
Beam pulse duration	$t_{\rm pulse}$	$\mu { m s}$	727	961	727/961	727/961	961	897
Average beam power	$P_{\rm ave}$	MW	5.3	10.5	$1.42/2.84^{*)}$	10.5/21	21	27.2
RMS bunch length	$\sigma^*_{ m z}$	$\mathbf{m}\mathbf{m}$	0.3	0.3	0.41	0.3	0.3	0.225
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathrm{x}}$	$\mu{ m m}$	5	5	6.2	5	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	nm	35	35	48.5	35	35	30
RMS hor. beam size at IP	$\sigma^*_{\mathbf{x}}$	nm	516	516	1120	474	516	335
RMS vert. beam size at IP	$\sigma^*_{ m v}$	nm	7.7	7.7	14.6	5.9	7.7	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	99%	58.3%	73%	44.5%
Beamstrahlung energy loss	δ_{BS}		2.6%	2.6%	0.16%	4.5%	2.6%	10.5%
Site AC power	$P_{\rm site}$	MW	111	128	94/115	173/215	198	300
Site length	$L_{\rm site}$	$\rm km$	20.5	20.5	20.5	31	31	40

dE/dx Comparison: ALICE & ILD

ILD Tracking Efficiency

ALICE TPC – Gain Map

• MWPC readout

Gaseous Detector Comparison

experiment	chamber type	depth [cm x bar]	samples	dE/dx resolution [%]	
ILD	ТРС	135	220	4.7 (iso., Fermi)	
DELPHI	ТРС	80	192	5.7 (Fermi plateau)	6.2 (MIP)
ALEPH	ТРС	150	21	4.6 (Fermi plateau)	
OPAL	drift chamber	160 x 3.5	159	3.1 (iso., Fermi)	3.8 (MIP, jet)
STAR	ТРС	150	45	6.7	
ALICE	ТРС	160	159	5.5 (isolated)	8-12 (high density)

PID Technologies

- basic grouping with PF: charged hadrons, neutral hadrons, photons, electrons, muons
- gaseous detectors (TPC, wire/drift chambers): dE/dx
 much worse in silicon detectors: only few samples
 Time of Flight (TOF)

 only for low momenta (< 10 GeV)

 Cherenkov detectors: RICH, DIRC, TOP
 transition radiation detectors (TRD)

Time of Flight PID

- ECAL single-hit time resolution: 50 ps
- average over 10 first ECAL hits

[U. Einhaus, 2021]

Average Deflection Comparison

Gain Calculation

- calculation of triple GEM stack gain
 - based on parametrised measurements
 - ^o depends on gas mixture and E/B fields
 - T2K gas: 95% Ar : 3% CF₄ : 2% HC(CH₃)₃
 - also used in test beam
- build stacks of 3 GEMs from measured deflection profiles
 - increase statistics by mirroring and inverting
 - different stacks: 2880 (manual), 8736 (tool)
- deflections modulate electric fields locally
- GEM mounting tool reduces gain fluctuations by factor 2.7

Gain Calculation

- calculation of triple GEM stack gain
 - based on parametrised measurements
 - o depends on gas mixture and E/B fields
 - T2K gas: 95% Ar : 3% CF₄ : 2% HC(CH₃)₃
 - also used in test beam
- build stacks of 3 GEMs from measured deflection profiles
 - increase statistics by mirroring and inverting
 - ^o different stacks: 2880 (manual), 8736 (tool)
- deflections modulate electric fields locally
- GEM mounting tool reduces gain fluctuations by factor 2.7

Average Gain Deviation

MANUAL PROCESS

TOOL ASSISTED PROCESS

Average Gain on Tracks

- 8 modules each
- straight tracks from bins in first column to last
- calculate average gain for each track
- for ILD: fluctuations of 0.5 % tolerable after calibration
- 0.66 % is close \rightarrow less demanding calibration

Average Gain on Tracks

• 0.66 % is close \rightarrow less demanding calibration

Hit Selection for dE/dx

Figure 9.3.: The effect of the hit quality cuts. (a) The efficiency of the cuts if applied successively. (b) The distribution of the resulting number of valid hits on a track after all cuts.

- suppress Landau tail of
- traditionally: truncated mean
 → optimise fraction
- transformed distribution
 - more compact and symmetric
- alternative: fit distribution including tail
 - reasonable descriptions: Landau and lognormal
- best resolution: truncated mean at 75 %
- fitting takes 10× more computing time

- suppress Landau tail of
- traditionally: truncated mean
 → optimise fraction
- transformed distribution
 - more compact and symmetric
- alternative: fit distribution including tail
 - reasonable descriptions: Landau and lognormal
- best resolution: truncated mean at 75 %
- fitting takes 10× more computing time

- suppress Landau tail of
- traditionally: truncated mean
 → optimise fraction
- transformed distribution
 - more compact and symmetric
- alternative: fit distribution including tail
 - reasonable descriptions: Landau and lognormal
- best resolution: truncated mean at 75 %
- fitting takes 10× more computing time

- suppress Landau tail of
- traditionally: truncated mean
 → optimise fraction
- transformed distribution
 - more compact and symmetric
- alternative: fit distribution including tail
 - reasonable descriptions: Landau and lognormal
- best resolution: truncated mean at 75 %
- fitting takes 10× more computing time

Calibrating the Charge Measurement

- correct local variations of charge measurement
 - ^o due to electronics gain or gas gain
- in final experiment: dedicated calibration systems
 - electronics: calibration DAC
 - ° gas gain: radiation sources (,)

- not available in prototype setup
 → investigate alternatives
- electronics channel calibration:
 - [°] induce charge by pulsing closest GEM
- gas gain correction:
 - use test beam data

Electronics Channel Calibration

- idea: pulse GEM closest to pad board to induce charge
- pulses at various voltages
 → calibration slope & offset per channel
- issue: ceramic frames influence channels nearby
 - ° exclude channels from dE/dx measurement
- correct pad charge:

PAUL MALEK | CP3 SEMINAR

Row Based Gain Correction

- normally: need correction for any location
 requires 2D gain map
- test beam: track position is fixed in each run
 intersect each pad row in one location
- calculate a correction factor for each row
- use average hit charge:
- calculated only on data subset

Calibration Result

- test effect on dE/dx resolution
- process data with and without corrections
- no significant improvement
- expected: resolution dominated by primary ionisation
- larger fluctuations between runs

Extrapolation to ILD

- extrapolate from LPTPC to ILD TPC
 56 hits to 220 hits
- dE/dx resolution scales with number of hits • power law $\sigma_0 \cdot N^{-k}$, k < 0.5
- idea: combine hits from multiple tracks
 → pseudo tracks of arbitrary length
- power law fit finds k = 0.48
- potential small bias due to method
- resolution at 220 hits (including bias): 4.8%
- fulfills ILD goal of 5 %

Extrapolation to ILD

- extrapolate from LPTPC to ILD TPC
 56 hits to 220 hits
- dE/dx resolution scales with number of hits • power law $\sigma_0 \cdot N^{-k}$, k < 0.5
- idea: combine hits from multiple tracks
 → pseudo tracks of arbitrary length
- power law fit finds k = 0.48
- potential small bias due to method
- resolution at 220 hits (including bias): 4.8%

• fulfills ILD goal of 5 %

