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Future  e⁺e⁻ Colliders
• discovery of 125 GeV Higgs boson by ATLAS & 

CMS in 2021

• consensus for “Higgs Factory” as next big 
project in particle physics
◦ LHC cannot fully determine Higgs properties
◦ Higgs boson as window into BSM physics

• several concepts
◦ circular: FCC-ee, CEPC
◦ linear: CLIC, ILC

• e⁺e⁻ collider with Ecm ≥ 250 GeV
◦ Higgs-strahlung peak (e⁺e⁻ → ZH)

• further energy POIs:
 tt threshold (350 GeV)
 ttH / ZHH (≥ 500 GeV)
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The International Linear Collider
• accelerator design result of ~20y of R&D

• candidate site in the Kitakami area, Japan
◦ suitable for up to 50 km tunnel

• 20 km baseline design with ECM = 250 GeV
◦ upgradable to 500 GeV (30 km)

• accelerator based on 1.3 GHz SCRF cavities
◦ design gradient: 31.5 MV/m - 35 MV/m
◦ proven technology: E-XFEL, LCLS-II

• design luminosity of 1.35 × 1034 cm-2s-1

◦ double with luminosity upgrade

• 1312 (2625) bunches in ~1 ms long pulses
◦ 5 Hz repetition rate

• 80% electron polarisation, (30% positrons)

• 2 detectors in “push-pull” configuration
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Physics at the ILC
at 250 GeV (2 ab-1):

• improve Higgs mass precision to 14 MeV
◦ recoil-mass technique

• directly measure total width of the Higgs

• measure Higgs couplings to < 1%
◦ gauge bosons, 3rd gen. fermions
◦ BSM deviations expected at ~5%

• limit invisible Higgs decay width to < 0.16%

• measurement of mW to 2.5 MeV

• triple gauge couplings to O(10-3)

at higher energies:

• Higgs self coupling to < 30%

• top quark mass to 20 MeV

arXiv:1306.6329 [physics.ins-det]

arXiv:2203.07622 [physics.acc-ph]
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The International Large Detector
• general-purpose 4π particle detector for ILC

• detector specifications driven by physics 
requirements
◦ Higgs recoil mass → momentum resolution



◦ Higgs BR to b/c/τ → vertex resolution



◦ W/Z dijet mass separation → jet energy resolution
                           for E ≥ 100 GeV

→ optimized for particle flow
◦ highly granular calorimeters inside a 3.5 T solenoid
◦ highly efficient tracking system: TPC + silicon

 > 99% efficiency for pT > 250 MeV
◦ minimal material in inner detector

 barrel: ~0.1 X0; endcaps: ~0.5 X0

Δ(1/pT ) =
Δ pT

pT
2 ≤ 2⋅10−5 GeV−1⊕

10−3

pT sinθ

σd 0
≤ 5µm⊕ 10 µm

(p/GeV)(sinθ)3/2

ΔE /E ≈ 3 %



14.05.2024 PAUL MALEK | CP3 SEMINAR 10

The International Large Detector
• general-purpose 4π particle detector for ILC

• detector specifications driven by physics 
requirements
◦ Higgs recoil mass → momentum resolution



◦ Higgs BR to b/c/τ → vertex resolution



◦ W/Z dijet mass separation → jet energy resolution
                           for E ≥ 100 GeV

→ optimized for particle flow
◦ highly granular calorimeters inside a 3.5 T solenoid
◦ highly efficient tracking system: TPC + silicon

 > 99% efficiency for pT > 250 MeV
◦ minimal material in inner detector

 barrel: ~0.1 X0; endcaps: ~0.5 X0

Δ(1/pT ) =
Δ pT

pT
2 ≤ 2⋅10−5 GeV−1⊕

10−3

pT sinθ

σd 0
≤ 5µm⊕ 10 µm

(p/GeV)(sinθ)3/2

ΔE /E ≈ 3 %

≈ CMS/10 
 ALEPH/30

≤ CMS/2 | ALEPH/2

≈ CMS/2

≈ CMS/3



14.05.2024 PAUL MALEK | CP3 SEMINAR 11

Particle Flow
• precision of jet energy measurement limited 

by HCAL resolution

• combine information from all subdetectors to 
improve jet energy resolution
◦ 65% charged particles → tracker momentum
◦ 25% photons → ECAL energy measurement



◦ 10% neutral hadrons → HCAL energy


• separate individual particle contributions 
& match tracks and calorimeter showers
→ major driver for calorimeter & tracker design

 e.g. tungsten ECAL: large ratio λ/X0

• precision limited by wrong shower separation
→ “confusion”
◦ more prevalent at higher energies

ΔE /E ≤ 20 % /√E /GeV

ΔE /E ≥ 50 % /√E /GeV
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ILD Event Display
e⁺e⁻→ttH→6qbb
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ILD Sub-detectors
• vertex detector: 3 double-layers silicon pixel sensors
◦ material ≤ 0.15% X0 per layer
◦ spatial resolution = 3 µm

• inner silicon tracker: 2 double layers pixel sensors
◦ spatial resolution = 5 µm

• forward tracker: 2 pixel + 5 stereo strip layers
◦ extends tracking coverage to θ = 4.8°

• Time Projection Chamber
• outer silicon layer: 1 stereo layer strip sensors
◦ transverse resolution = 7 µm
◦ considered as timing layer for TOF (10 ps)

• ECAL: 30 layers tungsten + silicon / scintillator
◦ depth of 24 X0 / 0.85 λ
◦ 5 mm cell size

• HCAL: 48 layers steel + scintillator / RPC
◦ depth of 6 λ
◦ 3 cm / 1cm cell size
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← 335cm

↖ 180cm

↙ 35cm

← 776cm

↙ 200cm

↑ 235cm390cm ↑670cm ↑

← 445cm



14.05.2024 PAUL MALEK | CP3 SEMINAR 18

The ILD Time Projection Chamber

135 cm
220 cm

modular
readout

• field cage ~5% X0; end caps < 25% X0

• TPC standalone resolution requirement
◦

• gas amplification by MPGD: 
◦ GEM or MicroMEGAS
◦ small readout electrodes: ~1 mm × 6 mm
◦ alternative: GridPix (55 µm pixels)

• 220 samples per track for 35 cm < r < 170 cm
◦ high redundancy / efficiency
◦ excellent pattern recognition capabilities
↳matching of tracks and calorimeter clusters

• specific energy loss measurement for PID
◦ expected dE/dx resolution: ~5% ≈ ALEPH | ALICE

Δ pT / pT ≤ 10−4 (pT /GeV) ⇒ σr φ ≤ 100µm
≈ ALEPH/12 ≈ ALEPH/2

≈ ALICE
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Time Projection Chambers
• gas filled volume with (homogeneous) electric field

• fast charged incident particles ionise gas long their path
◦ electric field separates electron-ion pairs

• electrons drift to the anode
◦ magnetic field parallel to electric field reduces diffusion

• track “image” is projected onto segmented readout
◦ avalanche gas amplification required

• 3rd coordinate reconstructed from
arrival time and drift velocity

[O
. S

ch
äf

er
, 2

00
5]



14.05.2024 PAUL MALEK | CP3 SEMINAR 21

• insulating foil coated with copper on both 
sides
◦ holes allow transfer of electrons

• high voltage between electrodes creates 
strong field in holes (> 10 kV/cm)
→ avalanche gas amplification

• external fields influence GEM transparency 
for electrons and ions
◦ field dependency for electrons and ions 

generally inverted
→ fields can be tuned to absorb ions
→ reduces space charge induced field distortions

Gas Electron Multipliers

140 µm

70 µm

50 µm
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Gas Electron Multipliers
• insulating foil coated with copper on both 

sides
◦ holes allow transfer of electrons

• high voltage between electrodes creates 
strong field in holes (> 10 kV/cm)
→ avalanche gas amplification

• external fields influence GEM transparency 
for electrons and ions
◦ field dependency for electrons and ions 

generally inverted
→ fields can be tuned to absorb ions
→ reduces space charge induced field distortions

C=75%

X=67%

G=3
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The GridGEM Readout Module
• aluminium back frame
◦ provides rigidity & mounting points

• passive readout board w/ segmented anode
◦ 28 rows, 4828 pads

• stack of 3 GEMs
◦ mounted on thin ceramic frames
◦ ~95% active area

17 cm

21 cm

1.4 mm
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The Importance of Flat GEMs

GEM II

GEM I

anode

cathode

GEM III

transfer field

transfer field

drift field

1.8 kV/cm

1.4 kV/cm

3.2 kV/cm

85 V/cm100 V/cm

1.3 kV/cm

3.1 kV/cm

1.5 kV/cm1.5 kV/cm

1.5 kV/cm

90 V/cm

3 kV/cm induction field

GEM II

GEM I

cathode

GEM III

anode

1.5kV /cm
1.5kV /cm

3.0kV /cm

1.3kV /cm

1.5kV /cm

3.1kV /cm

1.8kV /cm
1.4 kV /cm

3.2kV /cm

transfer field

transfer field

induction field

90 V /cm 95 V /cm 85 V /cmtransfer field

• GEM deflections affect field 
homogeneity

• drift field distortions introduce E×B 
effects
◦ can deteriorate spatial resolution

• inter-GEM fields influence GEM 
transparency for electrons

• non-uniformity introduces 
variations of effective gain

→ minimise deflection to not affect 
momentum & dE/dx measurement
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The Importance of Flat GEMs

r
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 c
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modeled anode 

• GEM deflections affect field 
homogeneity

• drift field distortions introduce E×B 
effects
◦ can deteriorate spatial resolution

• inter-GEM fields influence GEM 
transparency for electrons

• non-uniformity introduces 
variations of effective gain

→ minimise deflection to not affect 
momentum & dE/dx measurement

Δ(r φ) = 25 µm

do
i: 

10
.3

20
4/

D
ES

Y-
TH

ES
IS

-2
01

0-
01

5



14.05.2024 PAUL MALEK | CP3 SEMINAR 30

The Importance of Flat GEMs

• GEM deflections affect field 
homogeneity

• drift field distortions introduce E×B 
effects
◦ can deteriorate spatial resolution

• inter-GEM fields influence GEM 
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A new GEM Mounting Tool
• typically GEMs are mounted under strong tension → not possible due to thin frames

• mounting without pre-tension → deflections of GEM foils larger than tolerable
◦ inherent to design or mounting process?

• developed & commissioned special mounting tool

• measure GEM flatness to compare old and new process
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Flatness Measurement Setup
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Example Measurements

OLD PROCESS TOOL ASSISTED PROCESS
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GEM Flatness Comparison

• measurement setup: 
xyz-stage & laser displacement sensor

• sample size:
◦ old process: 5 GEMs
◦ tool assisted: 7 GEMs

• tool reduces deflections by factor 3

• location of largest deflections
◦ manual: centre of frame cells
◦ tool assisted: close to the frame
→ flatness now limited by frames

RMS
90 µm
32 µm
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Testbeam Measurement
• measurements to test new modules
◦ extensive validation of previous results

 spatial resolution
 signal shape
 environmental / systemic effects

◦ new measurement: dE/dx resolution

• DESY II Test Beam: 5 GeV electrons

• 1 T solenoid magnet PCMag

• large TPC prototype (LPTPC) 

• measurements cover full sensitive volume

60 cm

70 cm
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Testbeam Measurement
• measurements to test new modules
◦ extensive validation of previous results

 spatial resolution
 signal shape
 environmental / systemic effects

◦ new measurement: dE/dx resolution

• DESY II Test Beam: 5 GeV electrons

• 1 T solenoid magnet PCMag

• large TPC prototype (LPTPC) 

• measurements cover full sensitive volume

50 cm
3x28 samples

e⁻
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Data Reconstruction
• readout based on ALTRO chip
◦ 10 bit ADC
◦ 20 MHz sampling rate

• pulse finding looks for charge peaks in each 
channel
◦ configurable threshold parameters

• hit finding combines neighboring pulses 
based on charge
◦ position calculated from charge-weighted 

mean

• track finding using Hough transformation

• track fitting using GBL

5 Software framework and reconstruction

ϕ

z, t

r

readout pads

hit

(a)

time
ch
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q

start
threshold

end
threshold

pulse length

pulse height

(b) pulse identification

ϕ

r ϕ

ch
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(c) hit identification

Figure 5.2: a) Measurement principle of the TPC. The measured charge is detected on the individual
pads in time and peaks in the charge distribution are identified. Charge pulses from adjacent pads in one
readout row are combined to hits if their arrival time is in agreement. b) The pulse identification scheme
together with all available steering parameters of the electronics and software framework. c) Sketch
of the charge distribution of a hit along one readout row. A darker color represents a larger measured
charge.

72

do
i: 

10
. 3

20
4/

PU
BD

B-
20

16
-0

26
59



14.05.2024 PAUL MALEK | CP3 SEMINAR 38

Signal Shape Measurements
• charge distribution on readout
◦ gives information on shape of electron cloud
◦ informs parameters for pulse & hit finding

• transverse: pad-response function (PRF)
◦ convolution of pad pitch & charge cloud width
◦ used to determine transverse diffusion



• longitudinal: signal rise time
◦ related to length of charge cloud

• both indicate smaller size for new modules
→ consistent with smaller distortions due to 

flatter GEMs
◦ excluded other effects:

 gas composition & contamination
 environmental & system effects

-4 -2 0 2 4
xhit − xpad [mm]

0.0

0.2

0.4

0.6

0.8

1.0

q p
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σPRF = √(σPRF , 0)
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2⋅z
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Dt [µm/√cm]
102.87±0.38
  99.06±0.40

σPRF = √(σPRF , 0)
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old    
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• charge distribution on readout
◦ gives information on shape of electron cloud
◦ informs parameters for pulse & hit finding

• transverse: pad-response function (PRF)
◦ convolution of pad pitch & charge cloud width
◦ used to determine transverse diffusion



• longitudinal: signal rise time
◦ related to length of charge cloud

• both indicate smaller size for new modules
→ consistent with smaller distortions due to 

flatter GEMs
◦ excluded other effects:

 gas composition & contamination
 environmental & system effects

Signal Shape Measurements

τ 
[5

0 
ns

]

σPRF = √(σPRF , 0)
2+(Dt)

2⋅z

old    

new  

leading

trailing
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Spatial Resolution Measurement
• spatial resolution determined from 

distribution of track residuals

• depends on drift distance z

◦  

◦ deteriorates due to diffusion
◦ electron attachment to oxygen contamination

• diffusion coefficient from PRF measurement 
used as input for fit

• fit result can be used to extrapolate to ILD
◦ higher magnetic field → lower diffusion
◦ no significant attachment expected

• 100 µm resolution at full drift can be reached

σr φ = √(σr φ ,0)
2+

(Dt )
2

Neff⋅e−Az⋅z

old    

new  
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Spatial Resolution Measurement
• spatial resolution determined from 

distribution of track residuals

• depends on drift distance z

◦  

◦ deteriorates due to diffusion
◦ electron attachment to oxygen contamination

• diffusion coefficient from PRF measurement 
used as input for fit

• fit result can be used to extrapolate to ILD
◦ higher magnetic field → lower diffusion
◦ no significant attachment expected

• 100 µm resolution at full drift can be reached

σr φ = √(σr φ ,0)
2+

(Dt )
2

Neff⋅e−Az⋅z
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Determining the dE/dx Resolution
• measure Q/Δx for each hit
◦ energy loss ΔE∝Q

• apply charge calibration

• Landau tail affects average Q

• best estimator:
→ 75 % truncated mean

• resolution from RMS of 
distribution

• resolution is constant
→ average over several runs

• relative resolution: ~9%
◦ for 56 valid hits per track

runstrackshits
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◦ energy loss ΔE∝Q

• apply charge calibration

• Landau tail affects average Q

• best estimator:
→ 75 % truncated mean

• resolution from RMS of 
distribution

• resolution is constant
→ average over several runs

• relative resolution: ~9%
◦ for 56 valid hits per track

runstrackshits
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Extrapolation to ILD

• extrapolate from LPTPC to ILD TPC
◦ 56 hits to 220 hits

• dE/dx resolution scales with number of hits
◦ power law

• idea: combine hits from multiple tracks
→ pseudo tracks of arbitrary length

• power law fit finds k = 0.48

• resolution at 220 hits: 4.8%

• fulfills ILD goal of 5 %

σ0⋅N−k , k < 0.5
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Summary
•the ILC is a mature project with an extensive physics case

•the ILD concept is able to provide the required measurement precision

◦ supported by detailed simulations & prototype tests

•the GEM + pad based TPC readout fulfills the requirements of the ILD TPC
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Backup
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Why e⁺e⁻?
• cleanliness:
◦ no pileup
◦ no underlying event

• cross-section “democracy”
◦ Higgs cross-section ~1% of total
◦ typical BSM cross-sections: ~0.1% - 1% of total

• know / fully reconstructible initial / final state
◦ well defined centre-of-mass energy

• no QCD corrections to cross-section 
calculations

→ more benign radiation environment
◦ allows to optimise detector performance

 

→ no trigger necessary
◦ all events can be analysed
◦ rare processes & unusual signatures detectable

→ reduces required model assumptions
→ allows study of spin dependence

→ much more precise theory predictions
◦ indirect searches for new physics to O(10 TeV)
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ILC Specifications
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dE/dx Comparison: ALICE & ILD
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ILD Tracking Efficiency
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ALICE TPC – Gain Map
• MWPC readout
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Gaseous Detector Comparison
experiment chamber type depth 

[cm x bar] samples dE/dx resolution [%]

ILD TPC 135 220 4.7
(iso., Fermi)

DELPHI TPC 80 192 5.7 
(Fermi plateau)

6.2 
(MIP)

ALEPH TPC 150 21 4.6 
(Fermi plateau)

OPAL drift chamber 160 x 3.5 159 3.1
(iso., Fermi)

3.8
(MIP, jet)

STAR TPC 150 45 6.7

ALICE TPC 160 159 5.5
(isolated)

8-12
(high density)



14.05.2024 PAUL MALEK | CP3 SEMINAR 56

PID Technologies
• basic grouping with PF: charged hadrons, neutral hadrons, photons, electrons, muons

• gaseous detectors (TPC, wire/drift chambers): dE/dx
◦ much worse in silicon detectors: only few samples

• Time of Flight (TOF)
◦ only for low momenta (< 10 GeV)

• Cherenkov detectors: RICH, DIRC, TOP

• transition radiation detectors (TRD)

   only charged particles
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Time of Flight PID
• ECAL single-hit time resolution: 50 ps

• average over 10 first ECAL hits

[U. Einhaus, 2021]
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Average Deflection Comparison

MANUAL PROCESS TOOL ASSISTED PROCESS
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Gain Calculation
• calculation of triple GEM stack gain
◦ based on parametrised measurements
◦ depends on gas mixture and E/B fields
◦ T2K gas: 95% Ar : 3% CF4 : 2% HC(CH3)3

 also used in test beam

• build stacks of 3 GEMs from measured 
deflection profiles
◦ increase statistics by mirroring and inverting
◦ different stacks: 2880 (manual), 8736 (tool)

• deflections modulate electric fields locally

• GEM mounting tool reduces gain fluctuations 
by factor 2.7
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Gain Calculation
• calculation of triple GEM stack gain
◦ based on parametrised measurements
◦ depends on gas mixture and E/B fields
◦ T2K gas: 95% Ar : 3% CF4 : 2% HC(CH3)3

 also used in test beam

• build stacks of 3 GEMs from measured 
deflection profiles
◦ increase statistics by mirroring and inverting
◦ different stacks: 2880 (manual), 8736 (tool)

• deflections modulate electric fields locally

• GEM mounting tool reduces gain fluctuations 
by factor 2.7

RMS
8.36 %
3.15 %
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Average Gain Deviation
MANUAL PROCESS TOOL ASSISTED PROCESS
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std. dev.
1.75 %
0.66 %

Average Gain on Tracks

• build “ILD TPC sectors” from calculated gain 
maps
◦ 8 modules each

• straight tracks from bins in first column to last

• calculate average gain for each track

• for ILD: fluctuations of 0.5 % tolerable after 
calibration

• 0.66 % is close → less demanding calibration
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Average Gain on Tracks

• build “ILD TPC sectors” from calculated gain 
maps
◦ 8 modules each

• straight tracks from bins in first column to last

• calculate average gain for each track

• for ILD: fluctuations of 0.5 % tolerable after 
calibration

• 0.66 % is close → less demanding calibration

std. dev.
1.75 %
0.66 %
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Hit Selection for dE/dx
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Finding the Optimal Estimator
• suppress Landau tail of 

• traditionally: truncated mean 
→ optimise fraction

• transformed distribution 
◦ more compact and symmetric

• alternative: fit distribution including tail
◦ reasonable descriptions: Landau and log-

normal

• best resolution: truncated mean at 75 %

• fitting takes 10× more computing time
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Calibrating the Charge Measurement

• correct local variations of charge 
measurement
◦ due to electronics gain or gas gain

• in final experiment: dedicated calibration 
systems
◦ electronics: calibration DAC
◦ gas gain: radiation sources (,)

• not available in prototype setup
→ investigate alternatives

• electronics channel calibration:
◦ induce charge by pulsing closest GEM

• gas gain correction:
◦ use test beam data
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Electronics Channel Calibration
• idea: pulse GEM closest to pad board to 

induce charge

• pulses at various voltages 
→ calibration slope & offset per channel

• issue: ceramic frames influence channels 
nearby
◦ exclude channels from dE/dx measurement

• correct pad charge: 
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Row Based Gain Correction

• normally: need correction for any location
◦ requires 2D gain map

• test beam: track position is fixed in each run
◦ intersect each pad row in one location

• calculate a correction factor for each row

• use average hit charge:

• calculated only on data subset
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Calibration Result

• test effect on dE/dx resolution

• process data with and without corrections

• no significant improvement

• expected: resolution dominated by primary 
ionisation

• larger fluctuations between runs
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Extrapolation to ILD

Event 1

Event 2

Event 3

Event 4

…

• extrapolate from LPTPC to ILD TPC
◦ 56 hits to 220 hits

• dE/dx resolution scales with number of hits
◦ power law

• idea: combine hits from multiple tracks
→ pseudo tracks of arbitrary length

• power law fit finds  k = 0.48

• potential small bias due to method

• resolution at 220 hits (including bias): 4.8%

• fulfills ILD goal of 5 %

σ0⋅N−k , k < 0.5
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