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Analysis Methods
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Weakly Supervised Anomaly Detection
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Classification Problem

▶ Goal: To achieve a better signal to
background ratio

▶ An optimal classifier is given by the likelihood
ratio

Roptimal(x) =
pS(x)
pB(x)

, (1)

where pS and pB are the signal and
background densities, respectively.

: Can be approximated with a supervised
classifier

: Problem: Labels are not available on
experimental data

Classifier

background
signal
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Weakly Supervised Classification

▶ Any monotonic function of a classifier has the
same decision boundaries

▶ Two mixed datasets with signal fractions fi

pi(x) = fi pS(x) + (1 − fi) pB(x) (2)

▶ Classifier gives likelihood ratio

Rmixed =
f1 Roptimal(x) + (1 − f1)
f2 Roptimal(x) + (1 − f2)

. (3)

: Monotonically increasing function of
Roptimal(x) as long as f1 > f2

: Weakly supervised classifier/ CWOLA

Classifier

background
signal

“Classification without labels: Learning from mixed samples in high energy physics” [1708.02949], E. Metodiev, B.
Nachman, J. Thaler
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Application to resonance searches
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Application to resonance searches
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Recreated from [2109.00546]

Classifier
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How to use Weakly Supervised Anomaly
Detection
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Weakly Supervised Analysis Chain

Full analysis chain
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LHC Olympics R&D dataset

▶ Benchmark dataset for anomaly detection

▶ QCD dijet background

▶ Signal
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“The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics” [2101.08320], G.
Kasieczka, B. Nachman, D. Shih et. al.
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Subjettiness

▶ Cluster jets into N subjets to obtain

τβ
N =

1
d0

∑
i

pT,i min
J

(∆RJi)β , (4)

: where J runs over all N subjet candidates,
: ∆RJi =

√
(∆yJi)2 + (∆ϕJi)2 is an angular distance measure, and

: d0 =
∑

i
pT,iR

β
0 a normalization factor.

“Identifying Boosted Objects with N-subjettiness” [1011.2268], J. Thaler, K. Van Tilburg
“Maximizing Boosted Top Identification by Minimizing N-subjettiness” [1108.2701], J. Thaler, K. Van Tilburg
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Subjettiness: Example
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LHC Olympics R&D dataset
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Weakly Supervised Analysis Chain
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CWOLA Hunting

a.u.

mSB SR SB

x x x

Recreated from [2109.00546]

▶ General assumption: Bump hunt, i.e. signal is
localized in m

: pB(x|m ∈ SB) = pdata(x|m ∈ SB)
▶ CWOLA Hunting-specific assumption:

Distribution of the background in x is
independent of m

: pB(x ∈ SB) = pB(x ∈ SR)
: pB(x|m) = pB(x)

“Extending the Bump Hunt with Machine Learning” [1902.02634], J. Collins, K. Howe, B. Nachman
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CWOLA Hunting

a.u.

mSB SR SB

x x x

Recreated from [2109.00546]
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“Extending the Bump Hunt with Machine Learning” [1902.02634], J. Collins, K. Howe, B. Nachman
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CATHODE

a.u.

mSB SR SB

x x x

Recreated from [2109.00546]

▶ General assumption: Bump hunt, i.e. signal is
localized in m

: pB(x|m ∈ SB) = pdata(x|m ∈ SB)
▶ CATHODE-specific assumption: Distribution of

the background in x is smooth in m

: Train a conditional density estimator on
the SB to learn pB(x|m)

: Interpolate into the SR to sample there

“Classifying Anomalies Through Outer Density Estimation” [2109.00546], A. Hallin et. al.

17
Weakly Supervised Anomaly Detection
Marie Hein — May 7, 2024

https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2109.00546


CATHODE
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Recreated from [2109.00546]
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“Classifying Anomalies Through Outer Density Estimation” [2109.00546], A. Hallin et. al.
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SIC curves
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Performance Comparison

Note that, at this stage, we do not explore the variance due
to different realizations of the signal or background events
(e.g., different choices of the 1000 signal events in the
mock data); later in this section, when we explore the
performance at smaller S=B, the effect of this variation will
be included.
We see that overall, CATHODE outperforms the other

weakly supervised methods across a wide range of signal
efficiencies—a factor of more than 2 compared to ANODE

and a factor of 1.3–2 compared to CWOLA hunting. At lower
signal efficiencies, CATHODE reaches a maximum SIC of
14, which represents a significant improvement compared
to ANODE’s 6.5 and CWOLA hunting’s 11. A more detailed
comparison of CATHODE with the other methods is as
follows:

(i) Both CATHODE and ANODE need to learn the
smoothly varying background. However, ANODE

must also learn the sharply peaked distributions in
x where the signal is localized (the “inner” density
estimator trained on the SR). This results in a
degradation of the ANODE anomaly detection
method and worse performance than CATHODE and
CWOLA hunting.

(ii) As for how CATHODE is able to outperform CWOLA

hunting, there are two reasons. First, there is a
correlation at the percent level between the chosen
features in x within the original LHCO R&D dataset
with the search variable (mJJ). Since CWOLA hunting
is very sensitive to correlations, this small correla-
tion is sufficient to degrade the performance com-
pared to that of CATHODE. Details of the correlation
study can be found in Sec. IV C. Second, CWOLA

hunting is limited to only using the events within the
sidebands to train the classifier (approximately 65
000 events), while CATHODE is able to oversample
events from the background model (here 200 000

events are used). These additional events for training
allow for a significant performance enhancement of
the CATHODE method. Further details on the effects
of oversampling are studied in Sec. IV D.

(iii) Next we turn to the comparison between CATHODE

and the simulation-dependent methods. Recall that
the idealized anomaly detector is meant to provide
an upper bound on the performance of any data vs
background anomaly detection method. Therefore, it
is remarkable that CATHODE achieves essentially
the same performance as the idealized anomaly
detector. The nearly optimal sensitivity of the
CATHODE method to the signal in the LHCO R&D
dataset indicates that interpolated density estimator
is modeling the background in the SR with very high
fidelity.

(iv) Finally, we see from Fig. 6 that while CATHODE and
the idealized anomaly detector are outperformed by
the supervised classifier everywhere (as is to be
expected), the difference is larger at higher signal
efficiencies. This may be explained by the fact that at
higher signal efficiencies, there is simply too much
background to find the signal; meanwhile, at lower
signal efficiency, the signal is sufficiently localized
and the background is sufficiently reduced that the
idealized anomaly detector and CATHODE are more
easily able to pick it out.

B. Performance at lower signal strengths

Thus far, the number of signal events injected into the
background was fixed at 1000 events (S=B ≈ 0.6% and
S=

ffiffiffiffi
B

p
≈ 2.2). To study the impact of the signal strength in

terms of signal improvement, lower signal rates are injected
into the background. The injection is done 10 times for
each model at each signal rate, and the maximum

FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of the signal
efficiency. The solid lines are deduced from a median value of ten fully independent trainings on the same training, validation and
evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset and are defined such that
they contain 68% of the runs around the median.

CLASSIFYING ANOMALIES THROUGH OUTER DENSITY … PHYS. REV. D 106, 055006 (2022)

055006-7

“Classifying Anomalies Through Outer Density Estimation” [2109.00546], A. Hallin et. al.
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Extracting the significance
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Weakly Supervised Analysis Chain

Full analysis chain

Data

Extract
Background

Template

Train &
Apply

Classifier

Iterate over SR choices

Extract
Significance

22
Weakly Supervised Anomaly Detection
Marie Hein — May 7, 2024



Weakly Supervised Analysis Chain

Full analysis chain

Extract
Background

Template

Train &
Apply

Classifier

Extract
Significance

Iterate over SR choices

Data

22
Weakly Supervised Anomaly Detection
Marie Hein — May 7, 2024



Weakly Supervised Analysis Chain

Full analysis chain

Data
Extract

Significance

Iterate over SR choices

Extract
Background

Template

Train &
Apply

Classifier

22
Weakly Supervised Anomaly Detection
Marie Hein — May 7, 2024



How model agnostic are we?
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“Tree-Based Algorithms for Weakly Supervised Anomaly Detection” [2309.13111], T. Finke, MH et. al.
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Uninformative features
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A look at the ML community

▶ Important criteria for their datasets:

1. Tabular data
2. Small- to medium-sized datasets

“Why do tree-based models still outperform deep learning on tabular data?” [2207.08815], L. Grinsztaj, E. Ollayon,
G. Varoquaux
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Decision Trees vs. Neural Networks

Branch

Input Node Internal Node

Leaf Node x1,i = f(Wij x0,j + bj)

27
Weakly Supervised Anomaly Detection
Marie Hein — May 7, 2024



Decision Trees

Branch

Input Node Internal Node

Leaf Node

▶ Start with one input node

▶ Choose split resulting in best
separation of classes

▶ Iterate until stop condition is
met
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Boosted Decision Trees

Branch

Input Node Internal Node

Leaf Node

AdaBoost:
Train subsequent trees on
misclassified events

Gradient Boosting:
Train subsequent trees to learn
residuals of previous ensemble state

ypred = T1(x) +
N∑

i=2

αi−1wi(x),

with learning rate α and leaf scores
wi(x).
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Neural Networks

▶ Rotationally invariant in input features

▶ Very good at feature engineering

x1,i = f(Wij x0,j + bj)
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Decision Trees vs. Neural Networks

Branch

Input Node Internal Node

Leaf Node x1,i = f(Wij x0,j + bj)
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A look at the ML community

“Why do tree-based models still outperform deep learning on tabular data?” [2207.08815], L. Grinsztaj, E. Ollayon,
G. Varoquaux
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Uninformative features
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Physics-motivated feature sets

Name # features Features

Baseline 4 {mJ1 , ∆mJ , τβ=1,J1
21 , τβ=1,J2

21 }

Extended 1 10 {mJ1 , ∆mJ , τβ=1,J1
N,N−1 , τβ=1,J2

N,N−1 } for 2 ≤ N ≤ 5

Extended 2 12 {mJ1 , ∆mJ , τβ=1,J1
N , τβ=1,J2

N } for N ≤ 5

Extended 3 56 {mJ1 , ∆mJ , τβ,J1
N , τβ,J2

N } for N ≤ 9 and β ∈ {0.5, 1, 2}

“Tree-Based Algorithms for Weakly Supervised Anomaly Detection” [2309.13111], T. Finke, MH et. al.
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Subjettiness vs. Subjettiness ratio
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Physics-motivated feature sets
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Physics-motivated feature sets

Name # features Features

Baseline 4 All informative

Extended 1 10 Some uninformative

Extended 2 12 All slightly informative

Extended 3 56 All slightly informative
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Results for different feature sets
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Different signal model
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Results for 3-pronged signal
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Results for 3-pronged signal
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Low level features
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Background: Top Tagging

(Some) Current challenges
• Point clouds as powerful 

paradigm to represent data


• Additional structure in 
architecture boosts 
performance


• Over wide range: Best 
complexity/performance trade-
off by physics-informed models


• Overall highest performance 
reached via transfer learning

• “Calibration”: Domain 
adaptation between simulation 
and collider data


• Uncertainty aware training


• Interpretability

ATL-PHYS-PUB-2022-039

“The Machine Learning Landscape of Top Taggers” [1902.09914], G. Kasieczka, T. Plehn, et. al.
“Feature Selection with Distance Correlation” [2212.00046], R. Das, G. Kasieczka, D. Shih
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Graph Neural Networks

Node Edge

▶ Permutation invariant representation
of the data

▶ Can encode physical symmetries
directly into the architecture
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GNNs for weak supervision
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GNNs for weak supervision
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GNNs for weak supervision
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“Full Phase Space Resonant Anomaly Detection” [2310.06897], E. Buhmann et. al.
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Lessons learned

Features for anomaly detection

▶ High level features can provide good performance with current state of the art technology

▶ Low level features are the more future-oriented approach but in the present still more
difficult to achieve

Strategies for improving physics ML applications

▶ Incorporating physics knowledge in algorithms and feature selection

▶ Considering the state of the art in Machine Learning research
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Weakly Supervised Analysis Chain

Full analysis chain

Extract
Background

Template

Train &
Apply

Classifier

Extract
Significance

Iterate over SR choices

Data
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Weakly Supervised Analysis Chain

Full analysis chain

1902.02634, 2005.02983, EXO-022-026, upcoming work

2210.14924

2001.05001, 2109.00546, 2203.09470, 2212.11285, ...

Data

2101.08320

Extract
Background

Template

2309.13111

Train &
Apply

Classifier

Extract
Significance

Iterate over SR choices
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Backup Slides
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ML setup

▶ NN: Ensemble of N independently
trained fully connected NNs

▶ BDT: Ensemble of N independently
trained Histogrammed Gradient Boosted
Decision Trees
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Ensembling
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Results for different feature sets
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