

Collaborative Research Center TRR 257

Weakly Supervised Anomaly Detection for Resonance Searches

Marie Hein

UCLouvain Seminar, May 7, 2024

Why Anomaly Detection?

Weakly Supervised Anomaly Detection Marie Hein — May 7, 2024

Model Specific Search

Model Agnostic Search

2 Weakly Supervised Anomaly Detection Marie Hein — May 7, 2024

RWTHAACHEN UNIVERSITY

Weakly Supervised Anomaly Detection

Weakly Supervised Anomaly Detection 3 Marie Hein — May 7, 2024

Classification Problem

- Goal: To achieve a better signal to background ratio
- An optimal classifier is given by the likelihood ratio

$$R_{\rm optimal}(x) = \frac{p_S(x)}{p_B(x)},$$
 (1)

where p_S and p_B are the signal and background densities, respectively.

- → Can be approximated with a supervised classifier
- → Problem: Labels are not available on experimental data

Weakly Supervised Classification

"Classification without labels: Learning from mixed samples in high energy physics" [1708.02949], E. Metodiev, B. Nachman, J. Thaler

- Any monotonic function of a classifier has the same decision boundaries
- Two mixed datasets with signal fractions f_i

$$p_i(x) = f_i p_S(x) + (1 - f_i) p_B(x)$$
 (2)

Classifier gives likelihood ratio

$$R_{\text{mixed}} = \frac{f_1 R_{\text{optimal}}(x) + (1 - f_1)}{f_2 R_{\text{optimal}}(x) + (1 - f_2)}.$$
 (3)

- → Monotonically increasing function of $R_{\text{optimal}}(x)$ as long as $f_1 > f_2$
- → Weakly supervised classifier/ CWoLA

Recreated from [2109.00546]

Recreated from [2109.00546]

Recreated from [2109.00546]

How to use Weakly Supervised Anomaly Detection

9 Weakly Supervised Anomaly Detection 9 Marie Hein — May 7, 2024

RWTHAACHEN UNIVERSITY

Full analysis chain

RWTHAACHEN UNIVERSITY

Full analysis chain

LHC Olympics R&D dataset

RWTHAACHEN UNIVERSITY

"The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics" [2101.08320], G. Kasieczka, B. Nachman, D. Shih et. al.

- Benchmark dataset for anomaly detection
- QCD dijet background
- Signal

LHC Olympics R&D dataset

Institute for Theoretical Particle Physics and Cosmology

"The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics" [2101.08320], G. Kasieczka, B. Nachman, D. Shih et. al.

- Benchmark dataset for anomaly detection
- QCD dijet background
- Signal

Subjettiness

"Identifying Boosted Objects with N-subjettiness" [1011.2268], J. Thaler, K. Van Tilburg "Maximizing Boosted Top Identification by Minimizing N-subjettiness" [1108.2701], J. Thaler, K. Van Tilburg

Cluster jets into N subjets to obtain

$$\tau_N^\beta = \frac{1}{d_0} \sum_i p_{T,i} \, \min_J (\Delta R_{Ji})^\beta \,, \tag{4}$$

- \rightarrow where J runs over all N subjet candidates,
- → $\Delta R_{Ji} = \sqrt{(\Delta y_{Ji})^2 + (\Delta \phi_{Ji})^2}$ is an angular distance measure, and → $d_0 = \sum_i p_{T,i} R_0^\beta$ a normalization factor.

13 Weakly Supervised Anomaly Detection Marie Hein — May 7, 2024

LHC Olympics R&D dataset

"The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics" [2101.08320], G. Kasieczka, B. Nachman, D. Shih et. al.

- Benchmark dataset for anomaly detection
- QCD dijet background
- Signal

Institute for

RWTHAACHEN

LHC Olympics R&D dataset

"The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics" [2101.08320], G. Kasieczka, B. Nachman, D. Shih et. al.

- Benchmark dataset for anomaly detection
- QCD dijet background
- Signal

Institute for

RWTHAACHEN

RWTHAACHEN UNIVERSITY

Full analysis chain

CWOLA Hunting

"Extending the Bump Hunt with Machine Learning" [1902.02634], J. Collins, K. Howe, B. Nachman

Recreated from [2109.00546]

- General assumption: Bump hunt, i.e. signal is localized in m
 - → $p_B(x|m \in SB) = p_{\text{data}}(x|m \in SB)$

 CWOLA Hunting-specific assumption: Distribution of the background in x is independent of m

- → $p_B(x \in SB) = p_B(x \in SR)$
- → $p_B(x|m) = p_B(x)$

CWOLA Hunting

"Extending the Bump Hunt with Machine Learning" [1902.02634], J. Collins, K. Howe, B. Nachman

Recreated from [2109.00546]

CATHODE

"Classifying Anomalies Through Outer Density Estimation" [2109.00546], A. Hallin et. al.

Recreated from [2109.00546]

- General assumption: Bump hunt, i.e. signal is localized in m
 - → $p_B(x|m \in SB) = p_{\text{data}}(x|m \in SB)$

CATHODE-specific assumption: Distribution of the background in x is smooth in m

- → Train a conditional density estimator on the SB to learn p_B(x|m)
- → Interpolate into the SR to sample there

CATHODE

"Classifying Anomalies Through Outer Density Estimation" [2109.00546], A. Hallin et. al.

Recreated from [2109.00546]

RWTHAACHEN UNIVERSITY

Full analysis chain

18 Weakly Supervised Anomaly Detection Marie Hein — May 7, 2024

Performance Comparison

RWTHAACHEN UNIVERSITY

"Classifying Anomalies Through Outer Density Estimation" [2109.00546], A. Hallin et. al.

Full analysis chain

Extracting the significance

Full analysis chain

Full analysis chain

Full analysis chain

22 Weakly Supervised Anomaly Detection Marie Hein — May 7, 2024

How model agnostic are we?

Weakly Supervised Anomaly Detection Marie Hein — May 7, 2024

How model agnostic are we?

How model agnostic are we?

RWTHAACHEN UNIVERSITY

Uninformative features

A look at the ML community

RWITHAACHEN

UNIVERS

"Why do tree-based models still outperform deep learning on tabular data?" [2207.08815], L. Grinsztaj, E. Ollayon, G. Varoquaux

- Important criteria for their datasets:
 - 1. Tabular data
 - 2. Small- to medium-sized datasets

Decision Trees vs. Neural Networks

 $x_{1,i} = f(W_{ij} x_{0,j} + b_j)$

Decision Trees

- Start with one input node
- Choose split resulting in best separation of classes
- Iterate until stop condition is met

Boosted Decision Trees

AdaBoost:

Train subsequent trees on misclassified events

Gradient Boosting:

Train subsequent trees to learn residuals of previous ensemble state

RWTHAACHEN

$$y_{\text{pred}} = T_1(x) + \sum_{i=2}^N \alpha^{i-1} w_i(x),$$

with learning rate α and leaf scores $w_i(x).$

- Rotationally invariant in input features
- Very good at feature engineering

$$x_{1,i} = f(W_{ij} \, \mathbf{x}_{0,j} + b_j)$$

Decision Trees vs. Neural Networks

 $x_{1,i} = f(W_{ij} x_{0,j} + b_j)$

A look at the ML community

"Why do tree-based models still outperform deep learning on tabular data?" [2207.08815], L. Grinsztaj, E. Ollayon, G. Varoquaux

Uninformative features

Name	# features	Features
Baseline	4	$\{m_{J_1}, \Delta m_J, \tau_{21}^{\beta=1,J_1}, \tau_{21}^{\beta=1,J_2}\}$
Extended 1	10	$\{m_{J_1}, \Delta m_J, \tau_{N,N-1}^{\beta=1,J_1}, \tau_{N,N-1}^{\beta=1,J_2}\} \text{ for } 2 \le N \le 5$
Extended 2	12	$\{m_{J_1}, \Delta m_J, \tau_N^{\beta=1,J_1}, \tau_N^{\beta=1,J_2}\}$ for $N \le 5$
Extended 3	56	$\{m_{J_1}, \Delta m_J, \tau_N^{\beta, J_1}, \tau_N^{\beta, J_2}\} \text{ for } N \leq 9 \text{ and } \beta \in \{0.5, 1, 2\}$

Name	# features	Features
Baseline	4	$\{m_{J_1}, \Delta m_J, \tau_{21}^{\beta=1,J_1}, \tau_{21}^{\beta=1,J_2}\}$
Extended 1	10	$\{m_{J_1}, \Delta m_J, \tau_{N,N-1}^{\beta=1,J_1}, \tau_{N,N-1}^{\beta=1,J_2}\}$ for $2 \le N \le 5$
Extended 2	12	$\{m_{J_1}, \Delta m_J, \tau_N^{\beta=1,J_1}, \tau_N^{\beta=1,J_2}\}$ for $N \le 5$
Extended 3	56	$\{m_{J_1}, \Delta m_J, \tau_N^{\beta, J_1}, \tau_N^{\beta, J_2}\}$ for $N \leq 9$ and $\beta \in \{0.5, 1, 2\}$

Name	# features	Features
Baseline	4	$\{m_{J_1}, \Delta m_J, \tau_{21}^{\beta=1,J_1}, \tau_{21}^{\beta=1,J_2}\}$
Extended 1	10	$\{m_{J_1}, \Delta m_J, \tau_{N,N-1}^{\beta=1,J_1}, \tau_{N,N-1}^{\beta=1,J_2}\}$ for $2 \le N \le 5$
Extended 2	12	$\{ m_{J_1}, \Delta m_J, \tau_N^{\beta=1,J_1}, \tau_N^{\beta=1,J_2} \}$ for $N \leq 5$
Extended 3	56	$\{ \boldsymbol{m_{J_1}}, \boldsymbol{\Delta m_J}, \tau_N^{\beta,J_1}, \tau_N^{\beta,J_2} \}$ for $N \leq 9$ and $\beta \in \{0.5, 1, 2\}$

Physics-motivated feature sets

RWTHAACHEN UNIVERSITY

Name	# features	Features
Baseline	4	$\{m_{J_1}, \Delta m_J, \tau_{21}^{\beta=1,J_1}, \tau_{21}^{\beta=1,J_2}\}$
Extended 1	10	$\{m_{J_1}, \Delta m_J, \tau_{N,N-1}^{\beta=1,J_1}, \tau_{N,N-1}^{\beta=1,J_2}\}$ for $2 \le N \le 5$
Extended 2	12	$\{m_{J_1}, \Delta m_J, \tau_N^{\beta=1,J_1}, \tau_N^{\beta=1,J_2}\}$ for $N \le 5$
Extended 3	56	$\{m_{J_1}, \Delta m_J, \tau_N^{\beta, J_1}, \tau_N^{\beta, J_2}\}$ for $N \leq 9$ and $\beta \in \{0.5, 1, 2\}$

Name	# features	Features
Baseline	4	$\{m_{J_1}, \Delta m_J, \tau_{21}^{\beta=1,J_1}, \tau_{21}^{\beta=1,J_2}\}$
Extended 1	10	$\{m_{J_1}, \Delta m_J, \tau_{N,N-1}^{\beta=1,J_1}, \tau_{N,N-1}^{\beta=1,J_2}\}$ for $2 \le N \le 5$
Extended 2	12	$\{m_{J_1}, \Delta m_J, \tau_N^{\beta=1, J_1}, \tau_N^{\beta=1, J_2}\}$ for $N \le 5$
Extended 3	56	$\{m_{J_1}, \Delta m_J, \tau_N^{\beta, J_1}, \tau_N^{\beta, J_2}\}$ for $N \leq 9$ and $\beta \in \{0.5, 1, 2\}$

Name	# features	Features
Baseline	4	$\{m_{J_1}, \Delta m_J, \tau_{21}^{\beta=1,J_1}, \tau_{21}^{\beta=1,J_2}\}$
Extended 1	10	$\{m_{J_1}, \Delta m_J, \tau_{N,N-1}^{\beta=1,J_1}, \tau_{N,N-1}^{\beta=1,J_2}\} \text{ for } 2 \le N \le 5$
Extended 2	12	$\{m_{J_1}, \Delta m_J, \tau_N^{\beta=1,J_1}, \tau_N^{\beta=1,J_2}\}$ for $N \le 5$
Extended 3	56	$\{m_{J_1}, \Delta m_J, \tau_N^{\beta, J_1}, \tau_N^{\beta, J_2}\}$ for $N \leq 9$ and $\beta \in \{0.5, 1, 2\}$

Name	# features	Features
Baseline	4	All informative
Extended 1	10	Some uninformative
Extended 2	12	All slightly informative
Extended 3	56	All slightly informative

Results for different feature sets

RWITHAACHEN UNIVERSITY

Different signal model

Results for 3-pronged signal

Results for 3-pronged signal

Low level features

41 Weakly Supervised Anomaly Detection Marie Hein — May 7, 2024

Background: Top Tagging

"The Machine Learning Landscape of Top Taggers" [1902.09914], G. Kasieczka, T. Plehn, et. al. "Feature Selection with Distance Correlation" [2212.00046], R. Das, G. Kasieczka, D. Shih

Graph Neural Networks

RWTHAACHEN UNIVERSITY

Edge

- Permutation invariant representation of the data
- Can encode physical symmetries directly into the architecture

Node

GNNs for weak supervision

"Identifying Anomalous Events Using Low-Level LHC Data", Master Thesis by Joep Geuskens

GNNs for weak supervision

RWTHAACHEN UNIVERSITY

"Identifying Anomalous Events Using Low-Level LHC Data", Master Thesis by Joep Geuskens

GNNs for weak supervision

RWTHAACHEN UNIVERSITY

"Identifying Anomalous Events Using Low-Level LHC Data", Master Thesis by Joep Geuskens "Full Phase Space Resonant Anomaly Detection" [2310.06897], E. Buhmann et. al.

Features for anomaly detection

- High level features can provide good performance with current state of the art technology
- Low level features are the more future-oriented approach but in the present still more difficult to achieve

Strategies for improving physics ML applications

- Incorporating physics knowledge in algorithms and feature selection
- Considering the state of the art in Machine Learning research

Weakly Supervised Analysis Chain

RWTHAACHEN UNIVERSITY

Full analysis chain

Weakly Supervised Analysis Chain

RWTHAACHEN UNIVERSITY

Full analysis chain

1902.02634, 2005.02983, EXO-022-026, upcoming work

RWITHAACHEN UNIVERSITY

Backup Slides

47 Weakly Supervised Anomaly Detection Marie Hein — May 7, 2024

ML setup

- NN: Ensemble of N independently trained fully connected NNs
- BDT: Ensemble of N independently trained Histogrammed Gradient Boosted Decision Trees

RWTHAACHEN UNIVERSITY

Ensembling

RWITHAACHEN UNIVERSITY

Results for different feature sets

RWTHAACHEN UNIVERSITY

"Tree-Based Algorithms for Weakly Supervised Anomaly Detection" [2309.13111], T. Finke, MH et. al.

50 Weakly Supervised Anomaly Detection Marie Hein — May 7, 2024

Marie Hein - marie.hein@rwth-aachen.de

RWTH Aachen University Templergraben 55 52056 Aachen

www.rwth-aachen.de